首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >Investigation of the coupling mechanism between bent pipes and volute on the stall inception at the centrifugal compressor inlet
【24h】

Investigation of the coupling mechanism between bent pipes and volute on the stall inception at the centrifugal compressor inlet

机译:离心压缩机进口失速开始时弯管与蜗壳的耦合机理研究

获取原文

摘要

The rotating stall of a centrifugal compressor not only deteriorates its efficiency but also impacts the blade fatigue failure. The inlet total pressure distortion is generated by a 90° bent pipe placed upstream from the inlet. The volute causes the circumferential non-uniform static pressure distribution of the impeller outlet, and the impeller is under the inlet distortion and the non-uniform outlet distribution condition. Current research pays little attention to the stall inception location and its formation process under the coupling interaction between the bent pipe and volute. In this paper, two installation angles of the inlet bent pipe were compared concerning the stall inception process, including the 115° (M1) and the 295° (M2) models. The circumferential angle between the volute tongue and the elbow axial plane approaches a blade passage width in model M1, and model M2 has the opposite installation angle to M1. The model M1 inlet low total pressure region caused by the bent pipe, and the outlet high static pressure region induced by the volute tongue together affect the same impeller passage at the 115° location causing the leading edge spillover. The coupling effect of the Model M1 accelerates the process of stall. However, the low total pressure region for the model M2 is located at the circumferential 295° point, and the high static outlet pressure affects the 115° impellers, resulting in a different stall inception location and process compared to the model M1. The leading edge spillover first occurs at the 295° location because of inlet distortion, and the second spillover appears at the 115° location due to the reversed propagation of the outlet high pressure region induced by the volute tongue. Compared to model M1, the stall formation of model M2 is relatively slow. Meanwhile, because of the recirculation flow, the static temperature rises sharply and the axial velocity drops significantly at the spillover region during the stall process. These results indicate that the coupling interaction between the low total inlet pressure and the high outlet static pressure jointly determines the stall inception location and its process at the centrifugal compressor inlet.
机译:离心式压缩机的旋转失速不仅会降低其效率,还会影响叶片疲劳失效。入口总压力变形是由放置在入口上游的90°弯管产生的。蜗壳引起叶轮出口的周向静压力分布不均匀,并且叶轮处于入口变形和出口分布不均匀的状态。目前的研究很少关注弯管与蜗壳耦合作用下的失速开始位置及其形成过程。在本文中,对失速开始过程中入口弯管的两个安装角度进行了比较,包括115°(M1)和295°(M2)模型。在模型M1中,蜗壳舌与肘部轴向平面之间的圆周角接近叶片通道宽度,模型M2与M1具有相反的安装角。 M1型由弯管引起的入口低总压力区域,以及蜗壳舌引起的出口高静压力区域一起在115°位置影响同一叶轮通道,从而导致前缘溢出。 M1型的耦合作用加速了失速过程。但是,模型M2的总压力较低区域位于圆周295°点,而较高的静态出口压力会影响115°的叶轮,因此与模型M1相比,失速起始位置和过程有所不同。由于入口变形,前缘溢出首先出现在295°位置,而第二次溢出则出现在115°位置,这是由于蜗壳舌引起的出口高压区域的反向传播所致。与模型M1相比,模型M2的失速形成相对较慢。同时,由于再循环流,在失速过程中,静态温度急剧上升,轴向速度在溢出区域显着下降。这些结果表明,低总入口压力和高出口静压力之间的耦合相互作用共同决定了失速开始位置及其在离心压缩机入口处的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号