首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >SCALE-RESOLVING SIMULATIONS OF BYPASS TRANSITION IN A HIGH-PRESSURE TURBINE CASCADE USING A SPECTRAL-ELEMENT DISCONTINUOUS-GALERKIN METHOD
【24h】

SCALE-RESOLVING SIMULATIONS OF BYPASS TRANSITION IN A HIGH-PRESSURE TURBINE CASCADE USING A SPECTRAL-ELEMENT DISCONTINUOUS-GALERKIN METHOD

机译:光谱单元间断伽辽金法解析高压汽轮机旁路过渡过程的尺度分解模拟

获取原文

摘要

The application of a new computational capability for accurate and efficient high-fidelity scale-resolving simulations of turbomachinery is presented. The focus is on the prediction of heat transfer and boundary layer characteristics with comparisons to the experiments of Arts et al. for an uncooled, transonic, linear high-pressure turbine (HPT) inlet guide vane cascade that includes the effects of elevated inflow turbulence. The computational capability is based on an entropy-stable, discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy. The suction side of the vane undergoes natural transition for the clean inflow case, while bypass transition mechanisms are observed in the presence of elevated inflow turbulence. The airfoil suction-side boundary layer turbulence characteristics during the transition process thus differ significantly between the two cases. Traditional simulations based on the Reynolds-averaged Navier Stokes (RANS) fail to predict these transition characteristics. The heat transfer characteristics for the simulations with clean inflow agree well with the experimental data, while the heat transfer characteristics for the bypass transition cases agree well with the experiment when higher inflow turbulence levels are prescribed. The differences between the clean and inflow turbulence cases are also highlighted through a detailed examination of the characteristics of the transitional and turbulent flow fields.
机译:提出了一种新的计算功能在涡轮机械的准确高效的高保真比例尺解析仿真中的应用。与Arts等人的实验比较,重点是对传热和边界层特征的预测。适用于未冷却的跨音速,线性高压涡轮(HPT)进口导向叶片叶栅,其中包括流入湍流增加的影响。计算能力基于熵稳定的,不连续的Galerkin频谱元素方法,该方法可扩展到任意高阶的时空精度。在干净的流入情况下,叶片的吸入侧会经历自然过渡,而在流入湍流升高的情况下,会观察到旁路过渡机制。因此,在两种情况下,过渡过程中的翼型吸力侧边界层湍流特性明显不同。基于雷诺平均Navier斯托克斯(RANS)的传统模拟无法预测这些过渡特性。在规定较高的入流湍流度的情况下,具有干净流入的模拟的传热特性与实验数据非常吻合,而旁路过渡工况的传热特性与实验非常吻合。通过详细研究过渡流和湍流场的特性,也可以清楚地看到干净湍流和流入湍流情况之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号