首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >MODELING CAPABILITY FOR CAVITY FLOWS IN AN AXIAL COMPRESSOR
【24h】

MODELING CAPABILITY FOR CAVITY FLOWS IN AN AXIAL COMPRESSOR

机译:轴流压缩机腔流量的建模能力

获取原文

摘要

Seal-teeth cavity leakage in a shrouded stator blade deteriorates the performance of an axial compressor. This impact of shrouded stator seal-teeth cavity flows on compressor performance is demonstrated by presenting a sensitivity study with different seal-teeth clearances. A parametric definition of the cavity geometry (including the seal teeth) is created for an axial compressor, which allows for variation in seal teeth design, clearance and cavity shape. One and a half subsonic stages (rotor-stator-rotor) of a 10 stage axial compressor derived from the EEE design is considered to perform a computational fluid dynamic study. A NLH calculation is performed to account for the unsteady effects across the rotor-stator interface. Accuracy of the NLH calculations is determined by a comparison with time-marching results. For mixing plane calculations the location of the rotor-stator interface relative to the upstream and downstream cavity connections is crucial. Comparison for mixing plane calculation at different rotor-stator interface is made with NLH results. For this configuration the low momentum leakage flow through the cavities gets entrained in the power stream upstream of the stator which increases the near hub blockage for the stator. Excessive near hub blockage alters the outlet flow conditions for the stator which changes the incoming flow for the downstream rotor. A vortical flow structure exists at the upstream and downstream cavity connections which changes with the increase in clearance and defines the flow going into and coming out of the cavity. An increase in seal-teeth cavity clearance is shown to deteriorate compressor efficiency up to 0.86% for the largest clearance analyzed. The parametric design and simulation process presented represents the first step in a design optimization process that accounts for cavity flows and seal leakage. The seal-teeth cavity should be modeled correctly to account for the correct blockage and loss distribution. It should also be integrated into the airfoil design at an early stage.
机译:笼罩式定子叶片中的密封齿腔泄漏会降低轴向压缩机的性能。定子密封齿腔流动对压缩机性能的影响可通过对不同密封齿间隙进行敏感性研究来证明。为轴向压缩机创建了腔几何形状(包括密封齿)的参数定义,从而可以改变密封齿的设计,间隙和腔的形状。由EEE设计衍生的10级轴向压缩机的一个半亚音速级(转子-定子-转子)被认为可以进行计算流体动力学研究。执行NLH计算以解决转子-定子界面上的不稳定影响。 NLH计算的准确性是通过与时间行进结果进行比较来确定的。对于混合平面计算,转子-定子界面相对于上游和下游腔体连接的位置至关重要。利用NLH结果对不同转子-定子接口处的混合平面计算进行了比较。对于这种配置,通过空腔的低动量泄漏流被夹带在定子上游的动力流中,这增加了定子的近轮毂阻塞。过度的近轮毂堵塞会改变定子的出口流量条件,从而改变下游转子的流入流量。在上游和下游空腔连接处存在涡流结构,该涡流结构随着间隙的增加而变化,并限定了流入和流出空腔的流量。对于最大的分析间隙,密封齿腔间隙的增加显示出压缩机的效率下降,最高可达0.86%。提出的参数化设计和仿真过程代表了设计优化过程的第一步,该过程考虑了模腔流动和密封泄漏。密封齿腔应正确建模,以说明正确的堵塞和损失分布。还应该在早期将其集成到机翼设计中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号