首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >FAST OPTIMISATION OF A THREE-DIMENSIONAL BYPASS SYSTEM USING A NEW AERODYNAMIC DESIGN METHOD
【24h】

FAST OPTIMISATION OF A THREE-DIMENSIONAL BYPASS SYSTEM USING A NEW AERODYNAMIC DESIGN METHOD

机译:新型气动设计方法快速优化三维旁路系统

获取原文

摘要

The propulsive efficiency of civil aviation power plants can be effectively improved by increasing the bypass ratio. Higher bypass ratios, however, exacerbate issues of performance, stability and integrity due to the interaction between the engine pylon, the outlet guide vanes (OGV) and the fan. These issues are due to the distortion of the static pressure field at fan exit due to the presence of the pylon and its transmission through the OGV bladerow and are more pronounced the closer the components of the low pressure compression (LPC) system are. These issues make a rational and effective design of the LPC system of paramount importance for the success of very high-bypass ratio engines. At the preliminary design phase, methods that utilise computational fluid dynamics (CFD) are prohibitively expensive, particularly if they are used as part of optimisation processes involving highly three dimensional, non-axisymmetric OGV designs. An alternative method is being developed exploiting the simplicity and the accuracy of surface singularity element methods to investigate the sensitivity of the bypass system to changes in the design variables. Although the singularity method is based on simplified assumptions of inviscid, incompressible flow, it still performs remarkably well when combined with a tailored optimisation technique. This paper discusses the optimisation framework in detail, including the underlying mathematical models that de- scribe the three-dimensional aerodynamic flowfield as well as the optimisation tools, variables and cost functions used within the optimisation process. The results show that the proposed approach can be used to explore quickly and efficiently a far wider design space than attempted so far in literature. Furthermore, the proposed method leads to non-axysymmetric cascade designs whereby every vane has the same load as the nominal vane whilst greatly reducing the static pressure distortion at fan exit.
机译:增加旁路比可以有效地提高民航发电厂的推进效率。但是,由于发动机吊架,出口导向叶片(OGV)和风扇之间的相互作用,较高的旁路比会加剧性能,稳定性和完整性的问题。这些问题是由于塔架的存在以及风扇通过OGV叶片排的传递而导致风扇出口处的静压力场变形引起的,并且在低压压缩(LPC)系统的组件越近的情况下,这种问题就越明显。这些问题使LPC系统的合理有效设计成为非常高旁路比发动机成功的关键。在初步设计阶段,利用计算流体动力学(CFD)的方法过于昂贵,特别是如果它们被用作涉及高度三维,非轴对称OGV设计的优化过程的一部分时。正在开发一种替代方法,该方法利用表面奇异元素方法的简单性和准确性来研究旁路系统对设计变量变化的敏感性。尽管奇异性方法是基于简化的无粘性,不可压缩流的假设,但与量身定制的优化技术结合使用时,其性能仍然非常出色。本文详细讨论了优化框架,包括描述三维空气动力学流场的基础数学模型,以及在优化过程中使用的优化工具,变量和成本函数。结果表明,所提出的方法可用于快速有效地探索比迄今为止文献中尝试的更广阔的设计空间。此外,所提出的方法导致了非轴对称的叶栅设计,由此每个叶片具有与标称叶片相同的负载,同时极大地减小了风扇出口处的静压变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号