首页> 外文会议>ASME Internal Combustion Engine Division technical conference >USING LES TO SIMULATE CYCLE-TO-CYCLE VARIABILITY DURING THE GAS EXCHANGE PROCESS
【24h】

USING LES TO SIMULATE CYCLE-TO-CYCLE VARIABILITY DURING THE GAS EXCHANGE PROCESS

机译:在气体交换过程中使用LES模拟循环之间的变异性

获取原文

摘要

In spark ignition (SI) engines, high efficiencies are typically obtained near limits of stable operation which may result in high cycle-to-cycle variations (CCV). Traditional computational fluid dynamics (CFD) tools like Reynolds-averaged Navier-Stokes simulations (RANS) may not predict the CCV in engines. Higher fidelity CFD tools like large-eddy simulations (LES) have been shown to capture these CCV. In this paper, LES of a motored transparent combustion chamber (TCC) engine is performed to simulate the CCV introduced during the gas exchange process. A grid convergence study is performed, and it is shown that using a 1 mm in-cylinder grid size leads to similar flowfield statistics as compared to using a 0.5 mm in-cylinder grid size. The phase-averaged mean and root mean square (RMS) flowfields predicted by LES are validated comprehensively using particle image velocimetry (PIV) measurements. The validation is performed for 4 different crank angles, corresponding to the intake, compression, expansion and exhaust strokes, and for three different measurement planes. It is shown that LES is able to accurately predict the mean velocities, whereas the RMS velocity magnitudes are under-predicted. The inaccuracy in the RMS velocities are largest during the intake stroke, whereas good agreement with the measurements is observed during the expansion and exhaust strokes. A similarity index analysis provides a quantitative measure of the number of cycles that are required to be simulated to capture the flowfield statistics. This analysis is applied to both the PIV dataset and CFD dataset. It is shown that approximately 20 cycles are sufficient to obtain converged mean and RMS flowfields from the simulations, whereas the PIV measurements require approximately 40 cycles. Faster convergence for the LES results is because the simulations do not take into account additional uncertainties in the rpm, plenum pressures, boundary temperatures and so on, which are present in the experiments.
机译:在火花点火(SI)发动机中,通常会在稳定运行的极限附近获得较高的效率,这可能会导致较高的循环间变化(CCV)。传统的计算流体动力学(CFD)工具(例如雷诺平均Navier-Stokes模拟(RANS))可能无法预测发动机的CCV。高保真CFD工具(例如大涡流仿真(LES))已显示出可捕获这些CCV。在本文中,执行了电动透明燃烧室(TCC)发动机的LES,以模拟在气体交换过程中引入的CCV。进行了网格收敛研究,结果表明,与使用0.5毫米的缸内网格尺寸相比,使用1毫米的缸内网格尺寸会导致相似的流场统计。 LES预测的相位平均均方根和均方根(RMS)流场已使用粒子图像测速(PIV)测量进行了全面验证。针对与进气,压缩,膨胀和排气冲程相对应的4个不同的曲柄角以及三个不同的测量平面执行验证。结果表明,LES能够准确地预测平均速度,而RMS速度幅度却被低估了。 RMS速度的误差在进气冲程期间最大,而在膨胀冲程和排气冲程期间则与测量值有很好的一致性。相似性指数分析提供了定量模拟以捕获流场统计数据所需的循环数。此分析同时应用于PIV数据集和CFD数据集。结果表明,大约20个周期足以从模拟中获得收敛的均值和RMS流场,而PIV测量则需要大约40个周期。 LES结果的更快收敛是因为模拟未考虑实验中存在的rpm,增压压力,边界温度等其他不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号