首页> 外文会议>AIAA space forum >The Resilient Spacecraft Executive: An Architecture for Risk-Aware Operations in Uncertain Environments
【24h】

The Resilient Spacecraft Executive: An Architecture for Risk-Aware Operations in Uncertain Environments

机译:弹性航天器执行器:不确定环境下风险感知操作的体系结构

获取原文

摘要

In this paper we discuss the latest results from the Resilient Space Systems project, a joint effort between Caltech, MIT, NASA Jet Propulsion Laboratory (JPL), and the Woods Hole Oceanographic Institution (WHOI). The goal of the project is to define a resilient, risk-aware software architecture for onboard, real-time autonomous operations that can robustly handle uncertainty in spacecraft behavior within hazardous and unconstrained environments, without unnecessarily increasing complexity. The architecture, called the Resilient Spacecraft Executive (RSE), has been designed to support three functions: (1) adapting to component failures to allow graceful degradation, (2) accommodating environments, science observations, and spacecraft capabilities that are not fully known in advance, and (3) making risk-aware decisions without waiting for slow ground-based reactions. In implementation, the bulk of the RSE effort has focused on the parts of the architecture used for goal-directed execution and control, including the deliberative, habitual, and reflexive modules. We specify the capabilities and constraints needed for each module, and discuss how we have extended the current state-of-the-art algorithms so that they can supply the required functionality, such as risk-aware planning in the deliberative module that conforms to mission operator-supplied priorities and constraints. Furthermore, the RSE architecture is modular to enable extension and reconfiguration, as long as the embedded algorithmic components exhibit the required risk-aware behavior in the deliberative module and risk-bounded behavior in the habitual module. To that end, we discuss some feasible, useful RSE configurations and deployments for a Mars rover case and an autonomous underwater vehicle case. We also discuss additional capabilities that the architecture requires to support needed resiliency, such as onboard analysis and learning.
机译:在本文中,我们讨论了弹性空间系统项目的最新结果,Caltech,MIT,NASA Jet推进实验室(JPL)和伍兹孔海洋学机构(WHOI)之间的联合努力。该项目的目标是为板载定义弹性,风险感知的软件架构,可以在危险和不受约束的环境中强大地处理航天器行为中的不确定性,而不会不必要地提高复杂性。该架构,称为弹性航天器高管(RSE),旨在支持三个功能:(1)适应组件故障以允许优雅的降级,(2)容纳环境,科学观察和航天器能力在不完全知之甚少前进,(3)在不等待基于慢的地面反应的情况下进行风险感知决策。在实施中,rse努力的大部分都集中在用于目标定向执行和控制的架构的部分,包括审议,习惯性和反射模块。我们指定每个模块所需的功能和约束,并讨论我们如何扩展当前的最先进的算法,以便他们可以提供所需的功能,例如符合任务的审议模块中的风险感知计划。操作员提供的优先级和约束。此外,只要嵌入式算法组件在习惯模块中呈现所需的风险感知行为和习惯模块中的风险有限行为,就可以模块化以实现扩展和重新配置。为此,我们讨论了一些可行,有用的RSE配置和部署Mars Rover案例和自主水下车壳。我们还讨论了架构所需的额外功能,以支持所需的弹性,例如船上分析和学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号