首页> 外文会议>International topical meeting on nuclear reactor thermal hydraulics >IMPROVEMENT OF MIXING VANE CROSSFLOW MODEL IN SUBCHANNEL ANALYSIS
【24h】

IMPROVEMENT OF MIXING VANE CROSSFLOW MODEL IN SUBCHANNEL ANALYSIS

机译:子通道混合叶片横流模型的改进

获取原文

摘要

Subchannel analysis is widely used for development of CHF correlations and prediction of CHF values and locations; however, the current subchannel codes usually neither reflect the contribution of spacer grid mixing vanes on local crossflow, nor do they present the difference between various types of mixing vanes and their influence on flow field. The lack of crossflow modeling leads to major challenge on predicting CHF values and CHF locations in an axially non-uniform heating system, such as the reactor core. In a high axial power peaking system, not only the prediction of CHF value, but also the prediction of CHF location are critical in properly providing safety margin. Therefore, it is necessary to improve the mixing vane crossflow model in subchannel analysis. This paper presents the improvement of mixing vane crossflow model by applying the Distributed Resistance Method (DRM). The term of mixing vane resistance is expressed in momentum equations of subchannel analysis, and the new equations are solved to obtain the influence of mixing vanes on local pressure drop and crossflow. The improved (with DRM) model is applied to subchannel code COBRA-Ⅳ to analyze thermal hydraulic performance in a 5×5 rod bundle with one spacer grid having classical split vanes. The results are compared with those of numerical analysis available in literature. The results show that mixing vanes not only cause increase of local pressure drop in subchannels, but also cause increase of local crossflow in gaps among fuel rods, which reduces modeling uncertainties in lumped parameter codes. The analysis indicates that the improved mixing vane crossflow model performs satisfactorily predicting the most important qualitative trends for flows in rod bundle with spacer grid having mixing vanes, therefore it could be used as an approach to optimize the parametric studies for grid design.
机译:子通道分析被广泛用于开发CHF相关性以及预测CHF值和位置。但是,当前的子通道代码通常既不反映间隔栅混合叶片对局部横流的贡献,也不代表各种类型的混合叶片之间的差异及其对流场的影响。缺少横流建模导致在预测轴向不均匀加热系统(如反应堆堆芯)中的CHF值和CHF位置方面面临重大挑战。在高轴向功率峰值系统中,不仅CHF值的预测,而且CHF位置的预测对于正确提供安全裕度都至关重要。因此,有必要在子通道分析中改进混合叶片横流模型。本文通过应用分布式阻力法(DRM)提出了混合叶片横流模型的改进。在子通道分析的动量方程中表达了混合叶片阻力的术语,并求解了新的方程式以获得混合叶片对局部压降和错流的影响。将改进的(带DRM)模型应用于子通道代码COBRA-Ⅳ,以分析5×5杆束中的热力性能,该杆束具有一个带有经典分流叶片的间隔栅。将结果与文献中的数值分析结果进行比较。结果表明,混合叶片不仅会引起子通道局部压降的增加,而且还会导致燃料棒之间间隙中局部横流的增加,从而降低了集总参数代码中的建模不确定性。分析表明,改进的混合叶片横流模型能够令人满意地预测带有带有混合叶片的隔栅的棒束中流动的最重要的定性趋势,因此可以用作优化网格设计参数研究的一种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号