首页> 外文会议>American Control Conference >Traffic signal control with macroscopic fundamental diagrams
【24h】

Traffic signal control with macroscopic fundamental diagrams

机译:宏观基础图的交通信号控制

获取原文

摘要

The recent breakthrough finding of macroscopic fundamental diagram (MFD) establishes the foundation of macroscopic analysis in urban transportation studies. However, the implementation of MFD for traffic signal control remains challenging. This is because the compact network-wide information provided by MFD is insufficient for searching for the optimal microscopic control policy. In this paper, rather than implementing only MFD, we integrate MFD into our microscopic urban traffic flow model to constrain the searching space of control policies. This approach is able to maximize the contribution of MFD, without losing microscopic information in the control model. Specifically, we first build a traffic flow model and introduce the stochastic driver behaviors by a turning matrix. We then implement the approximate Q-learning with restricted control to reduce the computational cost of the large-scale stochastic control problem. Here, the information of MFD is used to design both the heuristic regularization term in the stage cost and the statebased feature vector of the approximate Q-function. By this approximate Q-learning algorithm, the traffic density distribution of the network tends to become homogenous, with the mean value around the optimal density of the MFD. The numerical experiments demonstrate that compared to a fixed policy, our policy could efficiently make a heterogeneous network more homogeneous, and thus guarantee a more robust shape of the MFD. Furthermore, our policy has a better performance on trip completion flow maximization compared to either a fixed or a greedy policy, since it can achieve the optimal density in the MFD.
机译:宏观基础图(MFD)的最新突破发现为城市交通研究中的宏观分析奠定了基础。然而,用于交通信号控制的MFD的实施仍然具有挑战性。这是因为MFD提供的紧凑的全网信息不足以搜索最佳的微观控制策略。在本文中,我们将MFD集成到微观的城市交通流模型中,而不是仅实施MFD,以限制控制策略的搜索空间。这种方法能够最大化MFD的贡献,而不会丢失控制模型中的微观信息。具体来说,我们首先建立一个交通流模型,并通过转向矩阵介绍随机驾驶员行为。然后,我们采用受限控制实施近似Q学习,以减少大规模随机控制问题的计算成本。在这里,MFD的信息用于设计阶段成本中的启发式正则项以及近似Q函数的基于状态的特征向量。通过这种近似的Q学习算法,网络的流量密度分布趋于均匀,其平均值在MFD的最佳密度附近。数值实验表明,与固定策略相比,我们的策略可以有效地使异构网络更加同质,从而保证MFD的形状更加健壮。此外,与固定或贪婪策略相比,我们的策略在行程完成流量最大化方面具有更好的性能,因为它可以在MFD中实现最佳密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号