首页> 外文会议>Conference on optical data storage >Multi-Objective Inverse Design of Sub-Wavelength Optical Focusing Structures for Heat Assisted Magnetic Recording
【24h】

Multi-Objective Inverse Design of Sub-Wavelength Optical Focusing Structures for Heat Assisted Magnetic Recording

机译:热辅助磁记录的亚波长光学聚焦结构的多目标逆设计

获取原文

摘要

We report using Inverse Electromagnetic Design to computationally optimize the geometric shapes of metallic optical antennas or near-field transducers (NFTs) and dielectric waveguide structures that comprise a sub-wavelength optical focusing system for practical use in Heat Assisted Magnetic Recording (HAMR). This magnetic data-recording scheme relies on focusing optical energy to locally heat the area of a single bit, several hundred square nanometers on a hard disk, to the Curie temperature of the magnetic storage layer. There are three specifications of the optical system that must be met to enable HAMR as a commercial technology. First, to heat the media at scan rates upward of 10 m/s, ~1 mW of light (>1% of typical laser diode output power) must be focused to a 30nm×30nm spot on the media. Second, the required lifetime of many years necessitates that the nano-scale NFT must not over-heat from optical absorption. Third, to avoid undesired erasing or interference of adjacent tracks on the media, there must be minimal stray optical radiation away from the hotspot on the hard disk. One cannot design the light delivery system by tackling each of these challenges independently, because they are governed by coupled electromagnetic phenomena. Instead, we propose multi-objective optimization using Inverse Electromagnetic Design in conjunction with a commercial 3D FDTD Maxwell's equations solver. We computationally generated designs of a metallic NFT and a high-index waveguide grating that meet the HAMR specifications simultaneously. Compared to a mock industry design, our proposed design has a similar optical coupling efficiency, ~3x improved suppression of stray optical radiation, and a 60% (280°C) reduction in NFT temperature rise. We also distributed the Inverse Electromagnetic Design software online so that industry partners can use it as a repeatable design process.
机译:我们报告使用反向电磁设计来计算优化金属光学天线或近场换能器(NFTs)的几何形状以及包括亚波长光学聚焦系统的介电波导结构,以用于热辅助磁记录(HAMR)。这种磁性数据记录方案依靠聚焦光能将硬盘上几百平方纳米的单个区域局部加热到磁性存储层的居里温度。为了使HAMR成为商业技术,必须满足光学系统的三个规范。首先,要以高于10 m / s的扫描速率加热介质,必须将约1 mW的光(大于典型激光二极管输出功率的1%)聚焦在介质上的30nm×30nm的点上。其次,要求的多年使用寿命要求纳米级NFT不得因光吸收而过热。第三,为了避免不希望有的擦除或干扰介质上相邻磁道,必须将最小的杂散光辐射远离硬盘上的热点。人们无法通过独立应对这些挑战来设计光传输系统,因为它们受耦合电磁现象的支配。取而代之的是,我们建议使用逆电磁设计结合商用3D FDTD Maxwell方程求解器进行多目标优化。我们通过计算生成了同时满足HAMR规格的金属NFT和高折射率波导光栅的设计。与模拟工业设计相比,我们提出的设计具有类似的光耦合效率,将杂散光辐射抑制能力提高了约3倍,并且NFT温升降低了60%(280°C)。我们还在线分发了逆电磁设计软件,以便行业合作伙伴可以将其用作可重复的设计过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号