首页> 外文会议>ASME heat transfer conference >FLOW AND HEAT TRANSFER CHARACTERISTICS IN RIBBED CHANNEL USING LATTICE BOLTZMANN METHOD
【24h】

FLOW AND HEAT TRANSFER CHARACTERISTICS IN RIBBED CHANNEL USING LATTICE BOLTZMANN METHOD

机译:格子Boltzmann方法在肋通道中的流动和传热特性

获取原文

摘要

In order to improve the efficiency of the gas turbines and power plants, researchers have aimed to reach higher turbine inlet temperatures. There is always a metallurgical limit for highest temperature, as the materials pertaining to turbine cannot withstand very high temperature due to change in material properties. Deformation, creeping and even melting of turbine blades may occur. To alleviate these, researchers have been trying to evolve the cooling systems for turbine blades. Two major cooling strategies involve (a) external cooling and (b) internal cooling. In case of internal cooling, a layer of air or some coolant is made to flow through small passages inside the blade. Both the systems remove heat from the blade and keep the blade temperature under the metallurgical limit. The present work is aimed at modeling the internal cooling passages of the gas turbine blades. The same geometry can throw light on the performance of cooling passages used in electronic devices. Taking these two applications into consideration, it becomes necessary to study flow and heat transfer past bluff-bodies and in ribbed channels. In the present work, the fluid flow behavior and heat transfer characteristics in a rectangular channel with staggered ribs mounted on both walls are analyzed using the lattice Boltzmann method (LBM). This study is carried out for the fluid with Prandtl number Pr = 0.7 and a wide range of Reynolds numbers (10 ≤ Re ≤ 120). The computational strategy is applied in various test cases and validated with the results reported in the literature. The unsteady flow behaviors, such as, instantaneous streamlines, vortex shedding frequency and phase plots are reported. For the ribbed channel (with staggered ribs), the heat transfer is predicted with the help of isotherms, local Nusselt number distribution and average Nusselt number.
机译:为了提高燃气轮机和发电厂的效率,研究人员的目标是达到更高的涡轮进口温度。最高温度始终存在冶金学极限,因为与涡轮有关的材料由于材料性能的变化而无法承受很高的温度。涡轮叶片可能发生变形,蠕变甚至熔化。为了缓解这些问题,研究人员一直在努力开发用于涡轮叶片的冷却系统。两种主要的冷却策略涉及(a)外部冷却和(b)内部冷却。在内部冷却的情况下,使空气层或一些冷却剂流过叶片内部的小通道。两种系统都从刀片上带走热量,并使刀片温度保持在冶金极限以下。本工作旨在对燃气轮机叶片的内部冷却通道进行建模。相同的几何形状可能会影响电子设备中使用的冷却通道的性能。考虑到这两种应用,有必要研究通过钝体和肋状通道的流动和传热。在目前的工作中,使用格子Boltzmann方法(LBM)分析了在两个壁上都安装有交错肋的矩形通道中的流体流动行为和传热特性。这项研究是针对普朗特数Pr = 0.7和宽范围的雷诺数(10≤Re≤120)的流体进行的。该计算策略适用于各种测试案例,并通过文献中报告的结果进行了验证。报告了非稳态流动行为,例如瞬时流线,涡旋脱落频率和相图。对于肋状通道(肋交错),借助等温线,局部Nusselt数分布和平均Nusselt数预测传热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号