首页> 外文会议>ASME heat transfer conference >Estimation of an Appropriate Lattice Structure for Phonon Transport Using Lattice Boltzmann Method
【24h】

Estimation of an Appropriate Lattice Structure for Phonon Transport Using Lattice Boltzmann Method

机译:用格子Boltzmann方法估算声子传输的适当晶格结构

获取原文

摘要

Heat transport at nanoscales departs substantially from the well established classical laws governing the physical processes at continuum level. The Fourier Law of heat conduction cannot be applied at sub-continuum level due to its inability in modeling non-equilibrium energy transport. Therefore one must resort to a rigorous solution to the Boltzmann Transport Equation (BTE) in the realm of nanoscale transport regime. Some recent studies show that a relatively inexpensive and accurate way to predict the behavior of sub continuum energy transport in solids is via the discrete representation of the BTE referred to as the Lattice Boltzmann method (LBM). Although quite a few numerical simulations involving LBM have been exercised in the literature, there has been no clear demonstration of the accuracy of LBM over BTE; also there exists an ambiguity over employing the right lattice configurations describing phonon transport. In the present study, the Lattice Boltzmann Method has been implemented to study phonon transport in miniaturized devices. The initial part of the study focuses upon a detailed comparison of the LBM model with that of BTE for one dimensional heat transfer involving multiple length and time scales. The second objective of the present investigation is to evaluate different lattice structures such as D1Q2, D1Q3, D2Q5, D2Q8, D2Q9 etc. for 1-D and 2-D heat conduction. In order to reduce the modeling complexity, gray model assumption based on Debye approximation is adopted throughout the analysis. Results unveil that the accuracy of solution increases as the number of lattice directions taken into account are incremented from D2Q5 to D2Q9. A substantial increase in solution time with finer directional resolutions necessitates an optimum lattice. A novel lattice dimension 'Mod D2Q5' has been suggested and its performance is also compared with its compatriots. It is also demonstrated that the inclusion of the center point within a particular lattice structure can play a significant role in the prediction of thermal conductivity in the continuum level. However, as the size of the device comes down to allow high Knudsen numbers, in the limiting case of ballistic phonon transport, the choice of lattice seems to have negligible effect on thermal conductivity.
机译:纳米尺度的热传输与在连续性水平上控制物理过程的完善的经典定律大相径庭。由于热传导的傅立叶定律无法建模非平衡能量传输,因此无法在次连续谱级别应用。因此,人们必须对纳米级输运制度领域中的玻尔兹曼输运方程(BTE)采取严格的解决方案。最近的一些研究表明,一种相对便宜且准确的方法来预测固体中亚连续能量传输的行为是通过BTE的离散表示形式,即格子Boltzmann方法(LBM)。尽管在文献中已经进行了很多涉及LBM的数值模拟,但是还没有清楚的证明LBM优于BTE的准确性。在采用描述声子传输的正确晶格构型方面也存在歧义。在本研究中,已经实现了格子Boltzmann方法来研究小型化设备中的声子传输。本研究的初始部分着眼于LBM模型与BTE模型在涉及多个长度和时间尺度的一维热传递方面的详细比较。本研究的第二个目的是评估一维和二维热传导的不同晶格结构,例如D1Q2,D1Q3,D2Q5,D2Q8,D2Q9等。为了降低建模复杂度,在整个分析过程中均采用基于Debye近似的灰色模型假设。结果表明,解决方案的精度随着所考虑的晶格方向数量从D2Q5到D2Q9的增加而增加。解决方案时间的大量增加以及更精细的方向分辨率,需要一个最佳的晶格。已经提出了一种新颖的晶格尺寸“ Mod D2Q5”,并将其性能与同胞进行了比较。还证明在特定晶格结构中包含中心点可以在连续水平的热导率预测中发挥重要作用。但是,随着器件尺寸的减小以允许较高的克努森数,在弹道声子传输的极限情况下,晶格的选择似乎对热导率的影响可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号