首页> 外文会议>ASME Pressure Vessels and Piping conference >MITIGATING FAILURES IN FERRITIC-AUSTENITIC DISSIMILAR METAL JOINTS IN PETROCHEMICAL INDUSTRY
【24h】

MITIGATING FAILURES IN FERRITIC-AUSTENITIC DISSIMILAR METAL JOINTS IN PETROCHEMICAL INDUSTRY

机译:石化行业中铁素体-奥氏体异种金属接头的减缓失效

获取原文

摘要

There are several failure mechanisms that might affect ferritic-austenitic dissimilar metal welds (DMWs) in petrochemical plants and refineries. Examples are cracking due to creep, stress corrosion cracking (SCC), sulphide SSC, thermal fatigue, brittle fracture, pitting corrosion, and hydrogen embrittlement. Of these, creep, SCC, and hydrogen embrittlement are perhaps of greater interest. Industry has many lessons learned; however, still experiences high consequence failures. This work describes the most common failure mechanisms in dissimilar ferritic-austenitic welds and summarizes a guidance to prepare welding procedures and reduce the likelihood of failures. This guidance is based on a literature review and industry experience. The metallurgical characteristics of the damage observed in both service and laboratory test samples indicate that creep rupture is the dominant failure mode for Dissimilar Metal Welds (DMW) in some high temperature service conditions. However, it has also been observed that temperature cycling contributes significantly to damage and can cause failure even when primary stress levels are relatively low. Therefore, a creep-fatigue assessment procedure is required as part of a remaining life calculation. API 579-1/ASME FFS-1 2007 Fitness-For-Service standard includes a compendium of consensus methods for reliable assessment of the structural integrity of equipment containing identified flaws or damage. Part 10 of API 579-1 includes a method for protection against failure from creep-fatigue. In the assessment of DMW, a creep-fatigue interaction equation is provided to evaluate damage caused by thermal mismatch, sustained primary stresses, and cyclic secondary loads. Failures due to hydrogen embrittlement cracking (HEC) mechanisms are not uncommon and are also described in this paper. Finally, a case history of a DMW failure in a steam methane furnace, which is common in the petrochemical industry, is described and shown as an example of a failure mitigation approach.
机译:在石油化工厂和精炼厂中,有几种故障机制可能会影响铁素体-奥氏体异种金属焊缝(DMW)。例如蠕变引起的开裂,应力腐蚀开裂(SCC),硫化物SSC,热疲劳,脆性断裂,点蚀和氢脆。其中,蠕变,SCC和氢脆可能更受关注。行业吸取了很多教训;但是,仍然会遭受严重后果的失败。这项工作描述了不同的铁素体-奥氏体焊缝中最常见的失效机理,并总结了准备焊接程序并减少失效可能性的指导。本指南基于文献综述和行业经验。在使用和实验室测试样品中均观察到的损伤的冶金特性表明,在某些高温使用条件下,蠕变断裂是异种金属焊缝(DMW)的主要失效模式。然而,也已经观察到,即使主应力水平相对较低,温度循环也会显着地造成损坏,并可能导致故障。因此,需要蠕变疲劳评估程序作为剩余寿命计算的一部分。 API 579-1 / ASME FFS-1 2007适合性服务标准包括共识方法纲要,用于可靠地评估包含已发现缺陷或损坏的设备的结构完整性。 API 579-1的第10部分包含一种防止蠕变疲劳失效的方法。在DMW的评估中,提供了蠕变-疲劳相互作用方程式来评估由热失配,持续的主应力和周期性的次级载荷引起的损伤。由氢脆裂化(HEC)机理引起的失效并不少见,本文也对此进行了描述。最后,描述并显示了在石化行业中常见的蒸汽甲烷炉中DMW故障的案例历史,并将其作为减少故障方法的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号