【24h】

Near-infrared (NIR) optogenetics using up-conversion system

机译:使用上转换系统近红外(NIR)光学机构

获取原文

摘要

Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF_4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.
机译:旨在操纵神经功能的非侵入式远程控制技术,以实现对大脑中的神经元网络的全面和定量理解,并且已经等待着神经障碍的治疗。最近,可以使用诸如沟道流蛋白-2(CHR2)的生物光反应性分子光学操纵神经元活动。然而,CHR2及其亲属大多数是可见光的可见光,这不会通过生物组织有效渗透。相比之下,近红外(NIR)光深入渗入组织中,因为生物系统几乎透明地在这个所谓的“成像窗口”中。在这里,我们使用由稀土元素组成的镧系纳米颗粒(LNP),因为它们吸收低能量NIR光以发射高能可见光(上转换)的发光体以激活沟道流体元素(CHRS)。用LNP(NayF_4:SC / Yb / ER)颗粒(峰发射,543nm)培养Neuron-glioma-杂交Nd-7/23细胞,并转染以表达C1v1(峰值吸收,539nm),Chr1的嵌合体和vchr1。响应于NIR激光(976nm)而产生光电流,与由过滤的HG灯(530-550nm)引起的水平相当的水平。 NIR光脉冲还诱发表达C1v1的培养神经元的动作电位。建议从LNP发出的绿色发光光有效地激活了C1V1以产生光电流。随着LNP,受体光反应性生物分子和光学器件的优化,该系统可以应用于大脑中的非侵入性致动神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号