首页> 外文会议>IEEE International Solid-State Circuits Conference >4.2 A 6A 40MHz four-phase ZDS hysteretic DC-DC converter with 118mV droop and 230ns response time for a 5A/5ns load transient
【24h】

4.2 A 6A 40MHz four-phase ZDS hysteretic DC-DC converter with 118mV droop and 230ns response time for a 5A/5ns load transient

机译:4.2一个6A 40MHz四相ZDS迟滞DC-DC转换器,具有118mV的下降和230ns的响应时间,适用于5A / 5ns的负载瞬态

获取原文

摘要

In recent years, the clock frequency, the number of cores, and the power dissipation of application processors (APs) for portable electronics have dramatically increased. As a result, peak processor currents have reached several amperes with slew rates on the order of 1As. These fast large steps incur large output voltage (VOUT) droops, which induce failed paths and cause processor black-outs. Present voltage regulators (VRs) combat these challenges by using bulky output capacitor (COUT) arrays that could add up to over 100μF. However, this practice is untenable for next-generation APs, which have severely limited PCB area and require fast dynamic voltage scaling. These challenges have led to great demand for ultra-fast VRs. PWM control requires a bandwidth 5 to 10× less than the switching frequency, fSW, which results in a slow response [1]. Hysteretic control has been proposed to achieve faster response [2, 3], however, it still suffers from an inherent delay (tdelay) up to the discharge period, (1-D)T, due to realistic hysteretic window size and inductor current (IL) slew limit. Consider, for example, a fast hysteretic VR achieving 10% voltage droop for an instant load step of 5A. For an inductor (L) chosen to have IL ripple < 200mA, and COUT under a few μF, tdelay cannot exceed a few ns. This requires a fSW from 0.5 to 1GHz, which in turn causes a large switching loss and restricts the feasible power level of the converter. This is against the power demand trend of APs. An interleaved multiphase topology can be the most effective way to improve both the system response and the equivalent IL slew rate by changing the number of phases; however, clock and phase synchronization and current sharing for conventional hysteretic control are challenging.
机译:近年来,便携式电子设备的时钟频率,内核数量以及应用处理器(AP)的功耗已大大增加。结果,处理器的峰值电流以1A / ns的压摆率达到了几安培。这些快速的大步幅会导致大的输出电压(VOUT)下降,从而导致路径故障并导致处理器停电。当前的稳压器(VR)通过使用笨重的输出电容器(COUT)阵列来应对这些挑战,这些阵列的总和可能超过100μF。但是,这种做法对于下一代AP来说是站不住脚的,因为下一代AP的PCB面积受到严重限制,并且需要快速动态调整电压。这些挑战导致对超快速VR的巨大需求。 PWM控制要求的带宽比开关频率fSW小5至10倍,这导致响应速度较慢[1]。提出了迟滞控制以实现更快的响应[2,3],但是由于实际的迟滞窗口大小和电感电流( IL)压摆极限。例如,考虑在5A的瞬时负载阶跃下实现10%电压下降的快速磁滞VR。对于选择的IL纹波小于200mA且COUT低于几μF的电感器(L),tdelay不能超过几ns。这需要0.5至1GHz的fSW,这反过来会导致较大的开关损耗,并限制了转换器的可行功率水平。这与AP的功率需求趋势背道而驰。交错的多相拓扑结构可能是通过更改相数来改善系统响应和等效IL摆率的最有效方法。然而,用于常规磁滞控制的时钟和相位同步以及电流共享是具有挑战性的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号