首页> 外文会议>ASME international mechanical engineering congress and exposition >Application of Fourier-Galerkin method to Volume Averaging Theory based model of heat sinks
【24h】

Application of Fourier-Galerkin method to Volume Averaging Theory based model of heat sinks

机译:Fourier-Galerkin方法在基于体积平均理论的散热器模型中的应用

获取原文

摘要

Efficient analysis of heat sink performance is a crucial step in the optimization process of such devices. Accurate analysis of these complex geometric systems with CFD and FE methods requires fine meshes, which imply significant computational time. In this study, Volume Averaging Theory (VAT) is rigorously applied to obtain a geometrically simplified but physically accurate model for any periodic heat sink geometry. The governing equations are averaged over a Representative Averaging Volume (REV) to obtain a set of integro-differential equations. Some information about lower level phenomena is lost in every averaging process and a closure scheme is required to model these behaviors. Experimental data for friction factor and Nusselt number in an REV is used to close the set of PDEs. This mathematical process replaces the complex geometry of the heat sink with a fictitious continuous medium and smoothens the quantities of interest throughout the system. These system features allow the use of a global Fourier-Galerkin method to efficiently solve the resulting equations and accurately predict the performance of the system. The effectiveness of the method is proven by applying it to model thermal behavior for laminar flow over an air-cooled pin-fin heat sink and a water-cooled micro-channel heat sink. The convergence in the Nusselt number in the case of constant heat flux is found to be quadratic with respect to the number of basis functions. The accuracy of the method is validated by comparing the numerical results obtained to existing experimental data. The maximum difference between the predicted Nusselt number and the experimental measurements is found to be only 4% for both cases.
机译:散热性能的有效分析是此类设备优化过程中的关键步骤。使用CFD和FE方法对这些复杂的几何系统进行准确的分析需要精细的网格,这意味着大量的计算时间。在这项研究中,严格应用体积平均理论(VAT),以获取任何周期性散热器几何形状的几何简化但物理上准确的模型。将控制方程式在代表平均体积(REV)上取平均,以获得一组积分微分方程式。在每个平均过程中都会丢失一些有关低级现象的信息,因此需要一种封闭方案来对这些行为进行建模。 REV中的摩擦因数和Nusselt数的实验数据用于关闭PDE集。该数学过程用虚拟的连续介质代替了散热器的复杂几何形状,并使整个系统中的关注量变得平滑。这些系统功能允许使用全局傅里叶-加勒金方法来有效地求解所产生的方程式并准确地预测系统的性能。通过将该方法应用于风冷针翅式散热器和水冷微通道散热器的层流热行为模型,证明了该方法的有效性。发现在恒定热通量的情况下,努塞尔数的收敛相对于基函数的数量是二次的。通过将获得的数值结果与现有实验数据进行比较,验证了该方法的准确性。两种情况下,预测的Nusselt数与实验测量值之间的最大差异仅为4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号