首页> 外文会议>ASME international mechanical engineering congress and exposition >COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE LOW VELOCITY IMPACT BEHAVIOR OF NANO ENGINEERED E-GLASS FIBER REINFORCED COMPOSITE LAMINATES
【24h】

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE LOW VELOCITY IMPACT BEHAVIOR OF NANO ENGINEERED E-GLASS FIBER REINFORCED COMPOSITE LAMINATES

机译:纳米工程化电子玻璃纤维增​​强复合材料层板低速冲击行为的计算和实验研究

获取原文

摘要

This paper presents computational and experimental investigation of the low velocity impact behavior of nano engineered E-glass fiber reinforced composite laminates. The Tetra Ethyl Orthosilicate (TEOS) chemically engineered glass nanofibers were manufactured using electrospinning technique and were investigated for their potential to improve the interlaminar properties. Plain weave fiberglass prepregs were used for manufacturing ten ply thick laminates. For production of the laminates with electrospinning interface layers the addition of the electrospinning sheets and an additional layer of resin film was used. The fabricated laminates were subjected to low velocity impacts of various energy levels to study the progressive damage and deformation mechanics of fiberglass laminates with and without electrospun nanofibers. The low velocity impact behavior was modeled using the transient dynamic finite element program LSDYNA. It was observed that the simulations results are in good agreement with the experimental results for lower impact energies. In addition, the simulated maximum impact force is smaller than the experimental value (soft response) at each drop height and at higher energy levels, the area under impact force vs time increases when electrospun nanofibers are used in the laminates. The study indicates that, the impact duration increases when electrospun nanofibers are used. Impact duration increases due to an additional damage accumulations in electrospun nanofibers layers. Both computational and experimental investigations clearly indicate that inserting interlaminar electrospun nanofiber layers improves the impact resistance of composites by absorbing additional impact energies.
机译:本文介绍了纳米工程电子玻璃纤维增​​强复合材料层压板低速冲击行为的计算和实验研究。使用静电纺丝技术生产了正硅酸四乙酯(TEOS)化学工程玻璃纳米纤维,并研究了其改善层间性能的潜力。平纹玻璃纤维预浸料用于制造十层厚的层压板。为了生产具有电纺界面层的层压材料,使用了电纺片和附加的树脂膜层。所制造的层压板受到各种能量水平的低速冲击,以研究具有和不具有电纺纳米纤维的玻璃纤维层压板的渐进式损伤和变形力学。低速冲击行为是使用瞬态动态有限元程序LSDYNA进行建模的。观察到,对于较低的冲击能量,模拟结果与实验结果非常吻合。另外,在每个液滴高度和更高的能量水平下,模拟的最大冲击力都小于实验值(软响应),当在层压物中使用电纺纳米纤维时,冲击力下随时间变化的面积会增加。研究表明,当使用电纺纳米纤维时,冲击持续时间会增加。由于电纺纳米纤维层中额外的损伤积累,冲击持续时间增加。计算和实验研究均清楚地表明,插入层间电纺纳米纤维层可通过吸收额外的冲击能量来提高复合材料的抗冲击性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号