首页> 外文会议>IEEE Sensors >Electronic label-free biosensing assays
【24h】

Electronic label-free biosensing assays

机译:无电子标签的生物传感测定

获取原文

摘要

Nanoscale electronic devices have the potential to achieve exquisite sensitivity as sensors for the direct detection of molecular interactions, thereby decreasing diagnostics costs and enabling previously impossible sensing in disparate field environments. Semiconducting nanowire-field effect transistors (NW-FETs) hold particular promise, though contemporary NW approaches are inadequate for realistic applications and integrated assays. We present here an integrated nanodevice biosensor approach [1] that is compatible with CMOS technology, has achieved unprecedented sensitivity, and simultaneously facilitates system-scale integration of nanosensors. These approaches enable a wide range of label-free biochemical and macromolecule sensing applications, such as specific protein and complementary DNA recognition assays, and specific macromolecule interactions at femtomolar concentrations. Critical limitations of nanowire sensors are the Debye screening limitation [3], and the lack of internal calibration for analyte quantification, which has prevented their use in clinical applications and physiologically relevant solutions. We will present approaches that solve these longstanding problems, which demonstrates the detection at clinically important concentrations of biomarkers from whole blood samples [4], integrated assays of cancer biomarkers [5], and the use of these as a quantitative tool for drug design and discovery, including binding kinetics [6] and chirality detection [7]. [1] Nature, 445, 519 (2007) [2] Elect. Dev. Lett. 31, 615 (2010) [3] Nano Lett. 7, 3405 (2007) [4] Nature Nanotech. 5, 138 (2010) [5] Biosens. Bioelectron., 28, 239 (2011). [6] Nature Nano. 7, 401 (2012). [7] ACS Nano, ASAP 4/2/13.
机译:纳米级电子设备作为直接检测分子相互作用的传感器,具有实现出色灵敏度的潜力,从而降低了诊断成本,并使以前在不同的现场环境中无法进行感测成为可能。半导体纳米线场效应晶体管(NW-FET)具有特别的前景,尽管现代NW方法不足以用于实际应用和集成化验。我们在这里介绍一种与CMOS技术兼容的集成纳米器件生物传感器方法[1],该方法已实现了空前的灵敏度,并同时促进了纳米传感器的系统规模集成。这些方法可实现广泛的无标记生化和大分子传感应用,例如特定的蛋白质和互补DNA识别测定,以及在飞摩尔浓度下的特定大分子相互作用。纳米线传感器的关键局限性是德拜(Debye)筛选局限性[3],并且缺乏用于分析物定量的内部校准,这已阻止了它们在临床应用和生理相关解决方案中的使用。我们将提出解决这些长期问题的方法,这些方法将证明从全血样品中检测出具有重要临床意义的生物标志物浓度[4],对癌症生物标志物进行综合测定[5],以及将这些标志物用作药物设计和开发的定量工具。发现,包括结合动力学[6]和手性检测[7]。 [1] Nature,445,519(2007)[2] Elect。开发人员来吧31,615(2010)[3] Nano Lett。 7,3405(2007)[4] Nature Nanotech。 5,138(2010)[5] Biosens。生物电子学,28,239(2011)。 [6]自然纳米。 7,401(2012)。 [7] ACS Nano,ASAP 4/2/13。

著录项

  • 来源
    《IEEE Sensors》|2013年|1|共1页
  • 会议地点
  • 作者

    Reed Mark A.;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号