首页> 外文会议>European Frequency and Time Forum >The space optical clocks project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems
【24h】

The space optical clocks project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

机译:太空光钟项目:高性能便携式和面包板光钟以及高级子系统的开发

获取原文

摘要

The use of ultra-precise optical clocks in space (“master clocks”) will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the “Space Optical Clocks” (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two “engineering confidence“, accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10-15 at 1 s integration time and relative inaccuracy below 5×10-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced- space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year.
机译:在太空中使用超精密光学时钟(“主时钟”)将在基础物理学领域中进行一系列新的应用(通过对遥测的比较,对爱因斯坦的广义相对论,时间和频率计量学进行测试)地面时钟),地球物理学(地球引力的映射)和天文学(为无线电测距和空间干涉提供本地振荡器)。在ESA的ELIPS-3计划中,“太空光学时钟”(SOC)项目旨在在本世纪末之前在国际空间站上安装和操作光学晶格时钟,这是ACES任务的自然后续行动,将其性能提高至少一个数量级。有效载荷计划包括一个光学晶格时钟,一个频率梳,一个微波链路和一个用于将ISS时钟与位于多个国家和大洲的地面时钟进行比较的光学链路。 EU-FP7-SPACE-2010-1号计划在空间光钟方面迈出了必要的一步。 263500(SOC2)(2011-2015)的目标是两个“工程学上的信心”,即在1 s积分时间内相对频率不稳定性低于1×10 -15 且相对误差低于5的精确可移动晶格光学时钟演示器×10 -17 。与当今最佳的便携式时钟相比,该目标性能的不稳定性和不准确性分别好大约2个和1个数量级。该设备将基于捕获的中性y和锶原子。一种设备是面包板。这两个系统将在实验室环境中进行验证,并将通过与实验室光学时钟和主频率标准进行比较来确定其性能。为了实现这些目标,SOC2将开发必要的激光系统-在功率,线宽,频率稳定性,长期可靠性和准确性方面进行调整。将会实现减少空间,功耗和质量要求的新颖解决方案。一些激光系统将朝着特别高的紧凑性和鲁棒性水平发展。此外,该项目还将验证相关环境中的关键激光组件。在本文中,我们介绍了该项目以及在第一年中取得的成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号