首页> 外文会议>ASME Pressure Vessels and Piping Division/K-PVP conference;PVP2010 >ADVANCED PROBABILISTIC FRACTURE MECHANICS USING THE R6 PROCEDURE
【24h】

ADVANCED PROBABILISTIC FRACTURE MECHANICS USING THE R6 PROCEDURE

机译:使用R6程序的高级概率断裂力学

获取原文

摘要

Deterministic Fracture Mechanics (DFM) assessments of structural components (e.g. pressure vessels and piping used in the nuclear industry) containing defects can usually be carried out using the R6 procedure. The aim of such an assessment is to demonstrate that there are sufficient safety margins on the applied loads, defect size and fracture toughness for the safe continual operation of the component. To ensure a conservative assessment is made, a lower-bound fracture toughness, and upper-bound defect sizes and applied loads are used. In some cases, this approach will be too conservative and will provide insufficient safety margins. Probabilistic Fracture Mechanics (PFM) allow a way forward in such cases by allowing for the inherent scatter in material properties, defect size and applied loads explicitly.Basic Monte Carlo Methods (MCM) allow an estimate of the probability of failure to be calculated by carrying out a large number of fracture mechanics assessments, each using a random sample of the different random variables (loads, defect size, fracture toughness etc). The probability of failure is obtained by counting the proportion of simulations which lead to assessment points that lie outside the R6 failure assessment curve. This approach can give good results for probabilities greater than 10~(-5). However, for smaller probabilities, the calculation may be inefficient and a very large number of assessments may be necessary to obtain an accurate result, which may be prohibitive. Engineering Reliability Methods (ERM), such as the First Order Reliability method (FORM) and the Second Order Reliability Method (SORM), can be used to estimate the probability of failure in such cases, but these methods can be difficult to implement, do not always give the correct result, and are not always robust enough for general use.Advanced Monte Carlo Methods (AMCM) combine the two approaches to provide an accurate and efficient calculation of probability of failure in all cases. These methods aim to carry out Importance Sampling so that only assessment points that lie close to or outside the failure assessment curve are calculated. Two methods are described in this paper: (1) orthogonal sampling, and (2) spherical sampling. The power behind these methods is demonstratedby carrying out calculations of probability of failure for semi-elliptical, surface breaking, circumferential cracks in the inside of a pressure vessel. The results are compared with the results of Basic Monte Carlo and Engineering Reliability calculations. The calculations use the R6 assessment procedure.
机译:确定性骨折力学(DFM)结构部件的评估(例如,核工业中使用的压力容器和管道)通常可以使用R6程序进行缺陷。这种评估的目的是证明,在施加的载荷,缺陷尺寸和断裂韧性方面存在足够的安全裕度,以安全的不断运行组件。为了确保保守评估,使用较窄的断裂韧性和上限缺陷尺寸和施加的载荷。在某些情况下,这种方法将过于保守,并提供安全裕的不足。概率性骨折力学(PFM)通过允许在材料特性,缺陷尺寸和施加的载荷的固有散射中允许前进的方向。 基本蒙特卡罗方法(MCM)允许通过执行大量裂缝力学评估来估计失败的可能性,每个裂缝的力学评估每个使用不同随机变量的随机样品(载荷,缺陷尺寸,断裂韧性等)。通过计算仿真的比例来获得失败的概率,这导致位于R6故障评估曲线之外的评估点。这种方法可以给出大于10〜(-5)的概率。然而,对于较小的概率,计算可以是低效的,并且可能需要大量的评估来获得准确的结果,这可能是令人禁止的。工程可靠性方法(ERM),如第一订单可靠性方法(表格)和二阶可靠性方法(SORM),可用于估计这种情况下失败的可能性,但这些方法可能难以实现,做并不总是给出正确的结果,并且并不总是足够强大的一般使用。 先进的蒙特卡罗方法(AMCM)结合了两种方法,以便在所有情况下提供准确有效地计算失败的可能性。这些方法旨在进行重要性采样,以便仅计算位于故障评估曲线附近或靠近或外部的评估点。本文中描述了两种方法:(1)正交采样,和(2)球形采样。证明了这些方法背后的电源 通过在压力容器内部进行半椭圆形,表面破碎的故障概率计算,在压力容器内部的圆周裂缝。结果与基本蒙特卡罗和工程可靠性计算结果进行了比较。计算使用R6评估程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号