首页> 外文会议>IMECE2009;ASME international mechanical engineering congress and exposition >ADAPTIVE CARBON MONOXIDE KINETICS FOR EXHAUST AFTERTREATMENT MODELING
【24h】

ADAPTIVE CARBON MONOXIDE KINETICS FOR EXHAUST AFTERTREATMENT MODELING

机译:排气后建模的自适应一氧化碳动力学

获取原文

摘要

Future emission standards are driving the need for advanced control of both Spark (SI) and Compression Ignition (CI) engines. However, even with the implementation of cooled Exhaust Gas Recirculation and Low Temperature Combustion (LTC), it is unlikely that in-cylinder combustion strategies alone will reduce emissions to levels below the proposed standards. As a result, researchers are developing complex catalytic aftertreatment systems to meet these tailpipe regulations for both conventional and alternative combustion regimes. Simulating these exhaust systems requires fast and accurate models suitable for significant changes in inlet conditions.Most aftertreatment devices contain Platinum Group Metals because of their widely documented beneficial catalysis properties; examples include Diesel Oxidation Catalysts, Three-Way Catalysts and Lean NO_X Traps. There are kinetic mechanisms available for each of these devices, but often they do not extrapolate well to other formulations. For example, Carbon Monoxide (CO) levels entering a catalyst are significantly different between an SI and Cl engine. In addition, modifying engine control to utilize LTC operation can result in an increase in CO levels due to lower combustion efficiency. This adversely affects the conversion capabilities of a catalytic device through increased levels of CO inhibition. Finally, catalyst loading and metal dispersion differences between devices often prohibit a direct extension of kinetic constants. As a result, mechanisms often need recalibration for correct modeling capabilities.In order to begin creating a more predictive kinetic mechanism, this paper simulates CO oxidation as a function of different inlet concentration levels and metal loadings. While aftertreatment devices contain many reactions, modeling of one fundamental reaction is a first step to determine the feasibility of adaptive kinetics. In addition, research into the history of the CO oxidation mechanism over platinum illustrates a moreaccurate rate expression to utilize in deference to current modeling activities. The authors calibrate this expression to experimental data taking into account significant changes in inlet conditions, metal loading and dispersion values. Model fidelity is determined through the simulation of additional data not part of the initial calibration efforts. In addition, the paper discusses strengths and weaknesses of the model along with how other researchers can help foster adaptive kinetic development.
机译:未来的排放标准正在推动对火花(SI)和压缩点火(CI)发动机进行高级控制的需求。但是,即使实施了冷却废气再循环和低温燃烧(LTC),仅缸内燃烧策略也无法将排放降低到建议标准以下的水平。结果,研究人员正在开发复杂的催化后处理系统,以满足常规和替代燃烧方案的这些排气管规定。模拟这些排气系统需要快速,准确的模型,以适合进气条件的重大变化。 大多数后处理设备都含有铂族金属,因为它们广泛地记载了有益的催化性能。例子包括柴油氧化催化剂,三效催化剂和贫NO_X捕集阱。这些设备中的每一个都有可用的动力学机制,但是通常它们不能很好地推断到其他配方。例如,SI和Cl发动机之间进入催化剂的一氧化碳(CO)含量明显不同。另外,由于较低的燃烧效率,修改发动机控制以利用LTC操作可能导致CO含量增加。通过增加水平的CO抑制,这不利地影响了催化装置的转化能力。最后,装置之间的催化剂负载和金属分散差异通常会阻止动力学常数的直接扩展。结果,机制通常需要重新校准才能获得正确的建模能力。 为了开始创建更具预测性的动力学机制,本文将CO氧化模拟为不同入口浓度水平和金属负载的函数。尽管后处理装置包含许多反应,但一个基本反应的模型化是确定自适应动力学可行性的第一步。此外,对铂上CO氧化机理的历史研究表明, 准确的速率表达,以参考当前的建模活动。考虑到进口条件,金属负载和分散值的显着变化,作者将该表达式校准为实验数据。模型的保真度是通过模拟附加数据(不是初始校准工作的一部分)来确定的。此外,本文还讨论了该模型的优缺点,以及其他研究人员如何帮助促进自适应动力学的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号