首页> 外文会议>2010 Asia Communications and Photonics Conference and Exhibition >Integrated photonics in the future: Silicon, plasmonics or something else?
【24h】

Integrated photonics in the future: Silicon, plasmonics or something else?

机译:未来的集成光子学:硅,等离子体或其他东西?

获取原文

摘要

Nanophotonics in general and plasmonics in particular have received much attention in recent years, fuelled by a general interest in nanotechnology but also by rapid advances in integrated photonics over the years, primarily brought about by using silicon/air or quartz interfaces, giving larger refractive index contrast than previously employed [1,2]. The minimum lateral spatial field width for a planar silicon waveguide in air is ∼300 nm, with a wavelength in the medium of ∼500 nm, at a vacuum wavelength of 1550 nm. Photonics integration density has thus shown a steady exponential growth since the 80s, but to pursue this state of affairs, it is necessary to find a successor/complement to the silicon technology. Such new (meta) materials seem to have to rely on a negative ε (such as in metals) somewhere in the system [3,4] since this offers a possibility for increasing the integration density in photonic lightwave circuits in two ways: (i) By using principles other than total internal reflection, i.e. surface polaritons and (ii) Employing e.g. metamaterials to generate artificially very large effective media refractive indices. Both methods could allow denser lateral packing of waveguides as well as shorter resonators and filters. In general, operating the metal/dielectric structures close to resonance [4] gives the highest confinement but also the highest spatial losses, since in essence (i) the field is forced into the lossy metal and (ii) in general the group velocity is significantly reduced. Thus, a main problem for many (albeit not all) applications is the optical loss associated with these high confinement metal-based metamaterials. In anticipation of a possible future breakthrough in developing metamaterials with at least a factor of 10 lower losses [5, 6] we analyze in this paper different resonant and nonresonant structures and the achievable performance. One example is waveguides made from arrays of near resonantly operated near-fi--eld coupled metal nanoparticles in the shape of e.g. spheres, which have attracted some attention [3,7,8]. Nanoarray waveguides, based on silver nanoparticles are, however, very lossy, see e.g. [9].
机译:近年来,纳米光学尤其受到近年来的关注,通过对纳米技术的一般兴趣来推动,而且由于多年来,通过硅/空气或石英界面的综合光子学的快速进步,主要带来了较大的折射率对比度比以前使用的[1,2]。空气中平面硅波导的最小横向空间场宽度为300nm,在〜500nm介质中,在1550nm的真空波长下具有波长。因此,光子学集成密度从80年代以来,稳定的指数增长,但要追求这种状况,有必要找到硅技术的继承/补充。这种新的(META)材料似乎必须依赖于系统中的某处的负ε(如金属)[3,4],因为这提供了两种方式增加光子光波电路中的集成密度:( i )通过使用总内反射以外的原理,即表面极性官和(ii)使用例如超材料生成人工非常大的有效媒体折射率。这两种方法都可以允许波导的密集横向包装以及较短的谐振器和滤波器。通常,操作靠近共振的金属/介电结构[4]给出最高的限制,而且还具有最高的空间损失,因为本质上(i)该领域被迫进入有损金属和(ii)一般的群体速度显着减少。因此,许多(尽管不是全部)应用的主要问题是与这些高限制金属基超材料相关联的光学损失。期望在使用至少10个损失损失的情况下开发超材料的可能未来突破[5,6],我们在本文中分析了不同的共振和非族裔结构以及可实现的性能。一个示例是由近谐振操作的近五的阵列制成的波导 - ELD耦合金属纳米颗粒的形状为例如球形吸引了一些注意[3,7,8]。然而,基于银纳米颗粒的纳米阵列波导是非常有损的,看见。 [9]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号