首页> 外文会议>Proceedings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems >Gate structure optimization of carbon nanotube transistor based infrared detector
【24h】

Gate structure optimization of carbon nanotube transistor based infrared detector

机译:基于碳纳米管晶体管的红外探测器的栅极结构优化

获取原文

摘要

Single wall carbon nanotube (SWCNT) is a promising one dimensional (1D) material to fabricate high performance infrared (IR) detectors owing to its unique electrical and physical properties. The 1D Schottky barrier between metal and CNT can separate the photon-generated electron-hole pairs so as to produce photocurrent for quantification and detection. However, the theory developed for the planar metal-semiconductor contact is not compatible with the 1D Schottky barrier within the CNT, thus the optimized structure for a CNT detector is unknown. Our understanding can be improved by using the capacitance-coupled electrostatic doping from a gate of a CNT transistor, which will find out the role of the CNT energy level. A standard back gate CNT transistor based photodetector was fabricated, which showed that positive gate voltages could improve the performance by widening the Schottky barriers. However, the back gate geometry will modulate two Schottky barriers simultaneously with applied bias, severely degrading the detector performance. In order to optimize gate structure for the CNT IR detector, we propose a detector integrated with three different gate structures: side gates for source and drain, and middle gates for the bulk of CNT. The side gates next to the source and drain control the carrier injection at the junctions independently, while the middle gates can block the fringing field from the other gates, and modulate the Fermi level of the CNT channel. We found that opposite gate voltages at source and drain terminals can optimize the performance of the detector by widening one barrier, but eliminating the other. The optimized structure can lead to a high performance nano-scale photon harvest device. This will pave the way for the CNT as a significant building block for future nano-optoelectronics.
机译:单壁碳纳米管(SWCNT)是一种有前途的一维(1D)材料,以制造由于其独特的电气和物理性质而制造高性能红外(IR)探测器。金属和CNT之间的1D肖特基屏障可以将光子产生的电子 - 空穴对分离,以产生光电流以进行定量和检测。然而,为平面金属半导体触点开发的理论与CNT内的1D肖特基屏障不兼容,因此CNT检测器的优化结构未知。通过使用来自CNT晶体管的栅极的电容耦合的静电掺杂可以提高我们的理解,这将发现CNT能量水平的作用。制造了一种标准的后栅CNT晶体管基于光电探测器,其显示,正栅极电压可以通过加宽肖特基屏障来提高性能。然而,后栅极几何形状将同时调制两个肖特基屏障,其施加的偏置,严重降低了检测器性能。为了优化CNT IR检测器的栅极结构,我们提出了一种与三种不同的栅极结构集成的检测器:用于源极和漏极的侧门,以及用于大量CNT的中间栅极。源极旁边的侧栅极独立地在连接处控制载流子,而中间栅极可以阻挡来自其他栅极的条纹场,并调制CNT通道的费米电平。我们发现源极和漏极端子的相对栅极电压可以通过加宽一个屏障来优化检测器的性能,但是消除了另一个屏障。优化的结构可以导致高性能纳米级光子收获装置。这将为CNT作为未来纳米光电子的重要组成块铺平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号