首页> 外文会议>ASME Fluids Engineering Division summer conference;FEDSM2008 >INVESTIGATING BEHAVIOR OF HYDROGEN BUBBLES IN ELECTRO-CHEMICAL MACHINING
【24h】

INVESTIGATING BEHAVIOR OF HYDROGEN BUBBLES IN ELECTRO-CHEMICAL MACHINING

机译:电化学加工中氢气泡的研究行为

获取原文

摘要

Electro-Chemical Machining (ECM) is an advanced machining technology and has been applied to highly specialized fields, such as aerospace, aeronautics, and medical industries. However, some problems remain to be solved. The efficient tool-design, electrolyte processing, and disposal of metal hydroxide sludge are typical problems. To solve such problems, CFD is thought to have potential as a powerful tool. However, a numerical method that can satisfactorily predict the ECM process has not been established because of the complex flow natures.In a previous study, we presented a new model to simulate the flow fields in an ECM process. This model is based on a two-way coupling method, taking the interaction between gas and liquid phases into account. In this coupling method, we assumed that electrolyte and generated hydrogen bubbles over a cathode surface have the same velocity. Therefore, we could simplify the governing equations. Since the flow field had a non-uniform density distribution due to hydrogen bubbles, a low Mach number approximation was applied to solve the pressure Poisson equation.In the present study, we calculate hydrogen bubble trajectories and investigate the distribution and a behavior of hydrogen bubbles. Since hydrogen bubbles follow fluid well, they travel along the stream line. This is because hydrogen bubbles have small density. In the results, around the low velocity region, hydrogen bubbles remain there with making the spiral structure. Hydrogen particles remain more in the suction side than that in the pressure side of the blade.
机译:电化学加工(ECM)是一种先进的加工技术,已应用于航空航天,航空航天和医疗行业等高度专业的领域。但是,仍有一些问题需要解决。有效的工具设计,电解质处理和金属氢氧化物污泥的处置是典型的问题。为了解决此类问题,CFD被认为具有强大的潜力。然而,由于复杂的流动性质,尚未建立能够令人满意地预测ECM过程的数值方法。 在先前的研究中,我们提出了一个新模型来模拟ECM过程中的流场。该模型基于双向耦合方法,并考虑了气相和液相之间的相互作用。在这种耦合方法中,我们假设电解质和阴极表面上产生的氢气泡具有相同的速度。因此,我们可以简化控制方程。由于氢气泡导致流场的密度分布不​​均匀,因此采用低马赫数近似法求解压力泊松方程。 在本研究中,我们计算了氢气泡的轨迹,并研究了氢气泡的分布和行为。由于氢气泡很好地跟随流体,因此它们沿着流线传播。这是因为氢气泡的密度小。结果,在低速区域附近,氢气泡保留在那里并形成螺旋结构。氢颗粒在叶片的吸力侧比在压力侧的滞留更多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号