首页> 外文会议>Conference on engineering systems design and analysis;Biennial conference on engineering systems design and analysis;ESDA 2008 >HIGH STIFFNESS CLOSED-FORM KINEMATIC STRUCTURAL DESIGN OF A LOW-COST 4/5-AXIS MICRO/MESO-SCALE INVERTED HIGH-SPEED MACHININGCENTER
【24h】

HIGH STIFFNESS CLOSED-FORM KINEMATIC STRUCTURAL DESIGN OF A LOW-COST 4/5-AXIS MICRO/MESO-SCALE INVERTED HIGH-SPEED MACHININGCENTER

机译:低成本4/5轴微/中尺度倒置高速加工中心的高刚度闭式运动结构设计

获取原文

摘要

The demand for miniaturized components is increasing in various industries, such as the biomedical, consumer electronics, optics and defense-related industries. The production of the micro/meso-scale components and parts in these industries is typically undertaken using MEMS-type photolithographic production techniques that have limitations in the materials and geometries that can be produced. However, numerous research efforts during the course of the last five to ten years have developed micro-scale EDM processes, micro-laser processes and micro-machining operations. In particular, the micro-machining processes have been demonstrated to provide a credible solution to the production of micro/meso-scale parts with complexes geometries in a broad range of materials. The development of mMTs is growing with the rapidly increasing demand for tighter tolerances. Traditionally, mMTs have been developed based on horizontal or vertical Cartesian co-ordinate machine tool structures. However, as the need for increased process flexibility and productivity is continuously being driven higher, there is a need to develop higher degree of freedom machining systems, including 4-axis and 5-axis machining centers. In this paper, the design of a low-cost, high-precision, high-speed 4/5-axis micro/meso machining center is presented as a cost-competitive alternative to existing open-form kinematics precision machining centers. A key departure from traditional machine tool design approach that has been adopted in this design is the utilization of closed-form kinematic structural design to create a high-stiffness, low-cost machine tool base. In addition, the lower thermal mass of the mMT base enhances rapid thermal washout in the structure and significantly reduces the thermal gradients in the structure. Consequently the thermal errors present in the structure are limited and simply and adequately handled using existing error compensation strategies. Initial results from an analytical and numerical investigation of the thermo-mechanical response of an innovative, kinematically closed-form inverted micro-machining center are presented. A coarse resolution parametric study was undertaken to evaluate the preferred preferred design space for maximum stiffness and minimum thermal distortion in low-cost, high precision, high-speed micro-machining centers. In addition, in order to facilitate part loading and unloading operations will be considered as a key design characteristic. A key result of this study has been the identification of a preferred design space for kinematic form selection, material selection and structural design options for increased rigidity, reduced thermal error and reduced production costs for flexible 4/5-axis micro/meso-scale machining centers. The proposed mMT design achieves a 3X increase in rigidity over a comparable tradition kinematically open horizontal mMT system
机译:在各种行业,例如生物医学,消费电子,光学和国防相关行业,对微型组件的需求正在增长。在这些行业中,微/中尺度组件的生产通常使用MEMS型光刻生产技术进行,该技术对可生产的材料和几何形状有一定的限制。然而,在过去五到十年的过程中,许多研究工作已经开发出了微型EDM工艺,微型激光工艺和微型加工操作。特别是,微加工工艺已被证明可以为生产具有多种材料复杂几何形状的微/中尺度零件提供可靠的解决方案。随着对更严格公差的需求的快速增长,mMT的发展也在不断发展。传统上,基于水平或垂直笛卡尔坐标机床结构开发了mMT。但是,随着对更高的工艺灵活性和生产率的需求不断提高,需要开发更高自由度的加工系统,包括4轴和5轴加工中心。在本文中,提出了一种低成本,高精度,高速的4/5轴微/中观加工中心的设计,作为现有开放式运动学精密加工中心的一种具有成本竞争力的替代方案。该设计中采用的传统机床设计方法的一个关键偏离是,采用封闭形式的运动学结构设计来创建高刚度,低成本的机床基础。此外,mMT基础的较低热质量增强了结构中的快速热冲刷,并显着降低了结构中的热梯度。因此,使用现有的误差补偿策略可以限制并简单,适当地处理结构中存在的热误差。通过对创新的,运动学上封闭形式的倒置微管的热机械响应进行分析和数值研究得出的初步结果 介绍了加工中心。进行了粗分辨率参数研究,以评估低成本,高精度,高速微加工中心中最大刚度和最小热变形的首选首选设计空间。另外,为了方便零件的装卸,将其视为关键设计特征。这项研究的主要成果是确定了用于运动形式选择,材料选择和结构设计选项的首选设计空间,以提高刚度,减少热误差并降低柔性4/5轴微/中尺度加工的生产成本中心。拟议的mMT设计使运动水平开放式mMT系统的刚性比同类传统产品提高了3倍

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号