首页> 外文会议>Conference on engineering systems design and analysis;Biennial conference on engineering systems design and analysis;ESDA 2008 >DESIGN, DEVELOPMENT AND CHARACTERIZATION OF A MICRO-REACTOR FOR FAST PYROLYSIS OF BIOMASS FEEDSTOCKS
【24h】

DESIGN, DEVELOPMENT AND CHARACTERIZATION OF A MICRO-REACTOR FOR FAST PYROLYSIS OF BIOMASS FEEDSTOCKS

机译:微生物反应器快速热解微反应器的设计,开发和表征

获取原文

摘要

This paper presents the latest results in the design, development and performance characterization of a novel prototype micro-reactor system that is uniquely capable of capturing the transient product evolution history of the fast pyrolysis of biomass products. With strong demand driving the technological development of sustainable energy solutions, the consideration of optimal conversion methodologies for biomass energy feedstocks has received a great deal of attention recent years. [1, 2] The pyrolysis of soft woods, in particular spruce and pine, has emerged as a credible alternative to bio-digestive strategies that are reliant on fermentation processes, typically of corn feedstocks.The design objectives for the micro-reactor system are reviewed, highlighting the multi-physics and multi-disciplinary complexity in designing for transient characterization of the pyrolized products by the micro-reactor system. One of the dominant challenges in the design of the micro-reactor for fast pyrolysis reactions is the requirement of very high heating rates for the feedstock, on the order of 100°C/s. A 1D transient thermal model of the reactor is developed that considers the average particle size and morphology, the initial surface temperature of the reaction surface within the micro-reactor, the heat loss to the ambient atmosphere in the reactor, the heat loss through the contact resistance between the sample and the reaction surface and the thermal capacitance of the reaction surface. A parametric evaluation of the design space was performed using the 1D model in order to identify a preferred range of particle size, reactor surface area and thermal input power. Based on the results for the domain reduction study, multi-physics thermo-mechanical 3D FEA was used to undertake a brute-force optimization process of the finaldesign. The key metric considered in the FEA study was the maximum thermal gradient in the reaction surface and was driven to a minimum value.The thermal response of the prototype micro-reactor has been evaluated using infra-red thermography measurement techniques. Thermographical analysis of the results has demonstrated negligible thermal gradients in the reaction plane up to the maximum reaction setpoint of 450°C. Based on the results of the thermal testing of the micro-reactor, the achieved peak heating rates of the sample have been estimated to be on the order of 400°C/s, meeting and exceeding the design requirement.
机译:本文介绍了一种新型原型微反应器系统的设计,开发和性能表征的最新结果,该系统独特地能够捕获生物质产品快速热解的瞬态产物演化历史。由于需求旺盛,推动了可持续能源解决方案的技术发展,近年来,对生物质能源原料的最佳转化方法的考虑已引起了广泛的关注。 [1,2]软木(尤其是云杉和松木)的热解已经成为依赖于消化过程(通常是玉米原料)的生物消化策略的可靠替代品。 审查了微反应器系统的设计目标,强调了在设计中通过微反应器系统对热解产物进行瞬态表征的多物理场和多学科的复杂性。用于快速热解反应的微型反应器设计中的主要挑战之一是要求原料的加热速度非常高,大约为100°C / s。建立了反应器的一维瞬态热模型,其中考虑了平均粒径和形态,微反应器内反应表面的初始表面温度,反应器中向环境大气的热损失,通过接触产生的热损失样品与反应表面之间的电阻以及反应表面的热容。为了确定粒径,反应器表面积和热输入功率的优选范围,使用一维模型对设计空间进行了参数评估。根据域缩减研究的结果,使用多物理场热机械3D FEA进行了最终产品的蛮力优化过程 设计。 FEA研究中考虑的关键指标是反应表面的最大热梯度,并使其降至最小值。 原型微反应器的热响应已使用红外热像仪测量技术进行了评估。结果的热成像分析表明,在最高450°C的最大反应设定点之前,反应平面中的热梯度可忽略不计。根据微反应器的热测试结果,估计样品达到的峰值加热速率约为400°C / s,可以满足并超过设计要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号