【24h】

Novel Reactor Designs to Burn Non-Fissile Fuels

机译:新型反应堆设计可燃烧非裂变燃料

获取原文

摘要

Intellectual Ventures is leading a private initiative to explore new approaches to nuclear power. We have used advanced computational tools and modeling technology to reexamine some of the fundamental assumptions-such as the requirement for a continuous supply of enriched fuel-that have long driven the design of fission reactor cores. Our highest goal is to simplify nuclear infrastructure in multiple ways that will help fission power meet the world's growing need for affordable and sustainable energy by directly addressing the issues of emissions, proliferation resistance, safety, and long-term fuel disposal.Our concepts build on the ideas for a "traveling wave" reactor (TWR) first presented by Edward Teller et al. in the early 1990s.1 Initial work suggested that traveling-wave reactor designs could offer several important advantages over other fission reactor designs. After startup, for example, a TWR could run for its entire design life without refueling with fissile material or, alternatively, might allow for refueling without a pause in operation. A TWR plant would also require little or no enriched uranium after an initial "ignition " phase; instead it would burn natural uranium, depleted uranium (a low-cost byproduct of uranium enrichment), or possibly even thorium for most of its life.These advantages derive from the unique way in which a TWR burns its fuel. A nuclear deflagration wave is first formed using enriched uranium or some other fissile material. The slow-moving wave front is allowed to expand into adjacent sections of the core that contain only fertile material, where it breeds its own fuel and advances at a slow and self-limiting pace.The cost of energy delivered by LWRs has been increasing due to the rapidly rising cost of enriched uranium fuel. TWRs fueled primarily by natural uranium or depleted uranium (huge stockpiles of which exist) could, if widely deployed, extend the remaining economic resources of uranium from a century to several millennia. TWRs that burn thorium fuel would tap into an essentially unlimited resource: by some estimates, thorium reserves would be sufficient with such reactors to support the global population at energy consumption levels equivalent to the current US per-capita rate for tens of millennia.We have performed integrated physics and engineering analyses of several TWR reactor designs, including those fueled by natural uranium, depleted uranium, thorium, and combinations of these. The various reactor concepts address distinct markets and applications, and each raises interesting engineering challenges. This paper includes illustrations and numeric examples of our progress to date and highlights some of the questions still to be answered about this fundamentally new approach to nuclear energy.
机译:知识分子风险投资公司正在领导一项私人计划,以探索核电的新方法。我们使用了先进的计算工具和建模技术来重新审视一些基本假设,例如对持续供应浓缩燃料的要求,这些基本假设长期以来一直驱动着裂变反应堆堆芯的设计。我们的最高目标是通过多种方式简化核基础设施,通过直接解决排放,扩散阻力,安全性和长期燃料处置等问题,来帮助裂变电力满足世界对可负担的可持续能源不断增长的需求。 我们的概念基于Edward Teller等人首先提出的“行波”反应堆(TWR)的思想。在1990年代初期。1最初的工作表明行波反应堆设计可以提供比其他裂变反应堆设计更多的重要优势。例如,在启动后,一台TWR可以在整个设计寿命内运行,而无需使用易裂变材料进行加油,或者可以在不暂停运行的情况下进行加油。在最初的“点火”阶段之后,一台TWR工厂也将需要很少或根本不需要浓缩铀。取而代之的是,它将在其整个生命周期中燃烧天然铀,贫化铀(铀浓缩的低成本副产品),甚至可能燃烧th。 这些优势源于TWR燃烧燃料的独特方式。首先使用浓缩铀或某些其他易裂变材料形成核爆燃波。允许缓慢移动的波前扩展到仅包含肥沃物质的岩心的相邻区域,在该区域中繁殖自己的燃料并以缓慢且自限的速度前进。 由于浓缩铀燃料成本的快速上涨,轻水堆输送的能源成本一直在增加。如果广泛部署,以天然铀或贫铀(存在大量铀)为燃料的TWR可以将铀的剩余经济资源从一个世纪延长到几千年。燃烧or燃料的压水堆将利用几乎无限的资源:据估计,这种反应堆的reserves储量足以在全球能源消耗水平上支持全球人口,其能源消耗水平相当于美国目前的人均能源消耗率已有数千年之久。 我们已经对多种TWR反应堆设计进行了综合的物理和工程分析,包括天然铀,贫化铀,th及其混合物的燃料。各种反应堆概念分别针对不同的市场和应用,并且提出了有趣的工程挑战。本文提供了迄今为止我们取得的进展的插图和数字示例,并重点介绍了有关这种根本性的核能新方法尚待回答的一些问题。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号