首页> 外文会议>第二届植物分子育种国际会议论文集 >Development of an Integrated Linkage Map of A Genome of Diploid Wheat and introgression and Mapping of Stripe Rust, Cereal Cyst Nematode and Karnal Bunt Resistance
【24h】

Development of an Integrated Linkage Map of A Genome of Diploid Wheat and introgression and Mapping of Stripe Rust, Cereal Cyst Nematode and Karnal Bunt Resistance

机译:二倍体小麦基因组整合连锁图谱的开发以及条锈,谷囊肿线虫和抗Karnal杂种的基因渗入和作图

获取原文

摘要

Genetic analysis and gene discovery in hexaploid wheat has been arduous because of its polyploid nature, large genome size, abundance of repetitive DNA sequences and limited polymorphism. Diploid A genome species, T. monococcum ssp. monococcum (Am), a diploid A genome species is domesticated and T. monococcum ssp. aegilopoides (syn. T. boeoticum) (Am) is a wild form of T. monococcum ssp. monococcum. are very closely related to T. urartu (Au) the A genome donor of hexaploid wheat, T. aestivum. T. monococcum being diploid with smaller genome size compared to bread wheat, existence of a very high level of polymorphism for DNA based markers, sequence conservation at orthologous loci and availability of a large BAC library is an attractive diploid model for gene discovery and allele mining in wheat It harbours immense variability for stress resistance and productivity traits. Transfer of useful variability from diploid to hexaploid wheat is difficult but could be facilitated by marker assisted selection. Linkage maps developed in diploid progenitor species will complement the genome analysis and gene cloning in wheat. An integrated molecular linkage map using a RIL population derived from inter sub-specific cross of T. boeoticum/T. monococcum has been developed. The linkage map consists of 181 markers including two morphological markers and has a size of 1 248 cM with four gaps in linkage group 2, 4 and 7. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. The RIL population segregated for resistance against stripe rust, leaf rust, cereal cyst nematode (CCN), Karnal bunt (KB) and powdery mildew and for several domestication and productivity traits. Classical genetic analysis revealed that resistance in these parental accessions was non-allelic. QTL analysis was performed for mapping these genes because both the parents were resistant to most of the diseases but the population showed segregation. Based on QTL analysis, the adult plant stripe rust resistance genes in T. monococcum and T. boeoticum were mapped on chromosomes 2Am and 5Am, respectively with Xpsr331 and Xbarcl51 as the linked markers. The CCN resistance genes were mapped on chromosomes 1Am and 2Am with BE444890 and BE498358 as the linked markers, respectively. Similarly Karnal bunt resistance gene in T. boeoticum was mapped on chromosomes lAm with Xwmc470 as the linked marker. In addition to mapping, all these genes have been transferred to hexaploid wheat using tetraploid wheat as bridging species. The B genome of T. durum suppressed both stripe rust and leaf rust resistance in F, triploid plants (T. durum/T. monococcum) and the F1 pentaploid plants (T. durum/T. monococcum//T. aestivum). Resistant plants, however, were recovered after first backcross with hexaploid wheat. Hexaploid derivatives with stable chromosome number and desirable agronomic pbenotype have been recovered. Evaluation of the introgression progenies at seedling and at adult plant stages revealed transfer of one seedling and one adult plant leaf rust resistance gene and one adult plant stripe rust resistance gene from T. monococcum. These near isogenic introgression lines (NIILs) are being used for fine mapping of stripe rust and leaf rust resistance genes transferred from T. monococcum. The introgression of CCN and KB resistance in tetraploid wheat background has been validated with the markers found to be linked to CCN and KB resistance in the RIL population. All the introgression lines will be evaluated for yield and yield components in replicated trials in the year 2007-08.
机译:由于六倍体小麦的多倍体性质,大的基因组大小,大量的重复DNA序列和有限的多态性,其遗传分析和基因发现一直很艰巨。二倍体A基因组种,T。monococcum ssp。二倍体A基因组物种monococcum(Am)已被驯化,T。monococcum ssp。 aegilopoides(T. boeoticum)(Am)是T. monococcum ssp的一种野生形式。一球菌。与六倍体小麦的一个基因组供体T. urartu(Au)紧密相关。 T. monococcum是二倍体,与面包小麦相比,具有较小的基因组大小,基于DNA的标记具有很高的多态性,直系同源位点的序列保守性以及可利用的大型BAC文库是用于基因发现和等位基因挖掘的有吸引力的二倍体模型在小麦中,其抗逆性和生产力性状差异很大。将有用的变异性从二倍体小麦转化为六倍体小麦是困难的,但可以通过标记辅助选择来促进。在二倍体祖先物种中建立的连锁图谱将补充小麦的基因组分析和基因克隆。使用来自溶血性伯克氏菌/ T亚种间特异杂交的RIL种群的综合分子连锁图。 monococcum已开发。连锁图由181个标记组成,包括两个形态标记,大小为1 248 cM,在连锁组2、4和7中有四个空位。除少数例外,标记的位置和顺序与其他标记相似小麦A基因组图谱。 RIL种群针对条锈病,叶锈病,谷类孢囊线虫(CCN),Karnal bunt(KB)和白粉病以及几种驯化和生产力性状进行了分离。古典遗传分析表明,这些亲本种质中的抗性是非等位基因。进行QTL分析以定位这些基因,因为父母双方均对大多数疾病有抵抗力,但种群表现出隔离。基于QTL分析,以Xpsr331和Xbarcl51为连锁标记,将单球菌和牛气菌的成年植物条锈病抗性基因分别定位在2Am和5Am染色体上。 CCN抗性基因分别以BE444890和BE498358为连锁标记定位在1Am和2Am染色体上。类似地,以Xwmc470为连锁标记,将Boeoticum中的Karnal bunt抗性基因定位在染色体IAm上。除作图外,所有这些基因已使用四倍体小麦作为桥接物种转移至六倍体小麦。硬粒小麦的B基因组抑制了F,三倍体植物(硬粒小麦/单核糖核酸)和F1五倍体植物(硬粒小麦/单核糖核酸//普通小麦)的条锈病和叶锈病抗性。但是,在与六倍体小麦首次回交后,恢复了抗性植物。具有稳定的染色体数和理想的农艺表型的六倍体衍生物已被回收。对幼苗和成年植物阶段的渗入后代的评估表明,从单球菌中转移了1株幼苗和1株成年植物的叶锈病抗性基因和1株成年植物的条锈病抗性基因。这些近等基因渗入系(NIILs)正用于从单球菌(T. monococcum)转移的条锈和叶锈病抗性基因的精细定位。四倍体小麦本底中CCN和KB抗性的渗入已通过与RIL群体中CCN和KB抗性相关的标记进行了验证。在2007-08年度的重复试验中,将评估所有渗入系的产量和产量成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号