首页> 外文会议>International Conference on Electrical Engineering >FPGA-based Controller For Electro-Mechanical Fin Actuation System Using Processor In The Loop (PIL)
【24h】

FPGA-based Controller For Electro-Mechanical Fin Actuation System Using Processor In The Loop (PIL)

机译:基于FPGA的机电式鳍片驱动系统控制器,采用回路处理器(PIL)

获取原文

摘要

The actuation system plays a significant role in any aerospace system design such as missiles, aircraft, UAVs, and spy-fly. The most commonly used actuation systems for missile applications are electro-mechanical, pneumatic, and hydraulic actuators. The main drawback of pneumatic and hydraulic actuators is that they may suffer from fluids leaks which leads to less reliability. So, in this paper, an electro-mechanical actuator aero fin control (EMA-AFC) is adopted for higher precision control positioning, simplicity, and high durability. The proposed (EMA-AFC) is designed based on missile dynamics constraints and the mechanical design and 3-D simulation are carried out and simulated using solid works software. As the actuation system nonlinearities can negatively affect the whole system performance in this work, a nonlinear actuation system model is presented and the related nonlinear parameters are identified and evaluated through a series of experiments. Also, an optimal PID control synthesis is developed using a genetic algorithm for improving system stability parameters. The proposed controller is implemented using FPGA (system generator) and is accomplished on Xilinx Spartan 3 AN FPGA board. A processor in the loop simulation (PIL) is carried out for evaluating the performance of the actuation system of four rudders, using random input signals to simulate roll, pitch, and yaw angles from autopilot after applying a mapping to deflection angles of the four rudders. The simulation results present high efficiency and robustness for different input signals with rapid amplitude and frequency changes for high dynamics systems.
机译:致动系统在任何航空系统设计中都起着重要作用,例如导弹,飞机,无人机和间谍飞行。用于导弹应用的最常用的致动系统是机电,气动和液压致动器。气动和液压执行器的主要缺点是它们可能会受到流体泄漏的影响,从而导致可靠性降低。因此,在本文中,采用了机电致动器空气鳍控制(EMA-AFC),以实现更高精度的控制定位,简单性和高耐用性。拟议的(EMA-AFC)是基于导弹动力学约束条件设计的,并使用Solid Works软件进行了机械设计和3-D仿真。由于驱动系统的非线性会在整个工作中对整个系统的性能产生负面影响,因此提出了一种非线性驱动系统模型,并通过一系列实验对相关的非线性参数进行了识别和评估。另外,使用遗传算法开发了最佳的PID控制综合,以改善系统稳定性参数。拟议的控制器使用FPGA(系统生成器)实现,并在Xilinx Spartan 3 AN FPGA板上完成。回路仿真(PIL)中的处理器用于评估四个方向舵的致动系统的性能,在将映射关系映射到四个方向舵的偏转角后,使用随机输入信号模拟自动驾驶仪的侧倾角,俯仰角和偏航角。对于高动态系统,仿真结果显示了具有不同幅度和频率变化的不同输入信号的高效率和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号