首页> 外文会议>Conference on Health Monitoring of Structural and Biological Systems >Reconfigurable elastic quantum valley Hall edge states in a piezoelectric topological metamaterial
【24h】

Reconfigurable elastic quantum valley Hall edge states in a piezoelectric topological metamaterial

机译:压电拓扑超材料中的可重构弹性量子谷霍尔边缘态

获取原文

摘要

Unlike conventional elastic waveguides, topologically protected wave transmission in topological metamaterials is immune to backscattering and localization from lattice imperfections and sharp corners. Topologically protected waveguides can be formed by breaking space inversion symmetry within the unit cell of a hexagonal lattice, creating an elastic realization of the quantum valley Hall effect. Recent studies have demonstrated the achievement of tunable topological edge states through the application of an external bias, such as a mechanical, thermal, or magnetic load. These initial studies demonstrate the capability to modify topological edge states through oftentimes complex realizations of truss-like lattice structures or external stimuli. However, a comprehensive reconfigurable topological metamaterial that enables real-time adaptation of both frequency and spatial characteristics of topological properties in an easily integrable manner has yet to be developed. Thus, to advance the state of the art, this research introduces an electromechanical metamaterial with the capability to adjust the frequency range for topological edge states and instantaneously create or eliminate topological interfaces through the integration of piezoelectric circuitry with a continuous mechanical substrate. The metamaterial is comprised of inductor circuitry connected to a thin piezoelectric plate in a periodic manner which produces a hexagonal lattice pattern of electromechanical resonators. The plane wave expansion method is used to reveal a tunable Dirac cone in the band structure of the lattice unit cell and indicate how perturbations to the circuit inductance can open topologically distinct bandgaps. Numerical simulations identify edge modes located at frequencies within the topological bandgap and demonstrate adaptive topologically protected elastic wave transmission.
机译:与传统的弹性波导不同,拓扑超材料中受拓扑保护的波传输不受晶格缺陷和尖角影响的反向散射和局部化。可以通过破坏六角形晶格的晶胞内的空间反转对称性来形成受拓扑保护的波导,从而实现量子谷霍尔效应的弹性实现。最近的研究表明,通过施加外部偏置(例如机械,热或磁负载)可以实现可调整的拓扑边缘状态。这些初步的研究表明,通过经常复杂地实现桁架状晶格结构或外部刺激,可以修改拓扑边缘状态。然而,尚未开发出能够以易于集成的方式对拓扑特性的频率和空间特性进行实时适应的全面的可重构拓扑超材料。因此,为了提高现有技术水平,这项研究引入了一种机电超材料,该材料具有通过调整压电电路与连续机械基板的集成来调整拓扑边缘状态的频率范围并立即创建或消除拓扑界面的能力。超材料由电感器电路组成,该电感器电路以周期性方式连接到压电薄板上,从而产生机电谐振器的六边形格子图案。平面波扩展方法用于揭示晶格单位单元带结构中的可调狄拉克锥,并指示对电路电感的扰动如何打开拓扑上明显的带隙。数值模拟确定了位于拓扑带隙内频率处的边缘模式,并演示了自适应拓扑保护的弹性波传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号