首页> 外文会议>Nanophotonics Conference >Targeted genome editing in potato protoplast via optical delivery of CRISPR/Cas9 ribonucleoproteins
【24h】

Targeted genome editing in potato protoplast via optical delivery of CRISPR/Cas9 ribonucleoproteins

机译:通过光学递送CRISPR / Cas9核糖核蛋白在马铃薯原生质体中进行靶向基因组编辑

获取原文

摘要

Since the development of genome editing tools like CRISPR/Cas9, it is possible to modify the sequences of genes in a very specific manner. The molecular delivery into plant protoplasts to improve the quality of agricultural crops represents a major bottleneck in the routine application of CRISPR/Cas9 in modern plant breeding. To approach this need, we suppose using gold nanoparticle mediated (GNOME) laser transfection for delivery of CR1SPR/Cas9 ribonucleoproteins (RNP) into potato protoplasts with high-throughput. As a proof-of-concept, we aim to reduce the toxic steroidal glykoalkaloid α-solanine in potatoes. GNOME laser transfection utilizes a picosecond Nd:YAG laser operating at 532 nm to excite surface plasmon resonance of membrane-attached gold nanoparticles. The strong absorption of laser light results in a temperature increase, leading to vaporization of the surrounding medium and to the formation of cavitation bubbles, which causes a transient permeabilization of the cell membrane. The challenges modifying protoplasts, in contrast to mammalian cells, include their sensitivity to osmolality stress, the lack of adherence to culture surfaces, the absence of commercial antibodies for nanoparticle targeting, and the low adherence of the applied nanoparticles to the protoplast's membrane. Viability in respect to different conditions was evaluated using a resazurin assay and the delivery of molecules by FITC-dextrane. To facilitate the binding of the nanoparticles, a combination of a cell membrane binding lectin and a linker molecule was investigated. Furthermore, we demonstrate the prototype of a bench-top laser transfection device, which allows conducting the complete workflow within a biological laboratory environment.
机译:由于开发了CRISPR / Cas9等基因组编辑工具,因此可以以非常特定的方式修饰基因序列。分子传递到植物原生质体中以改善农作物的质量代表了CRISPR / Cas9在现代植物育种中常规应用的主要瓶颈。为了满足这一需求,我们假设使用金纳米粒子介导的(GNOME)激光转染技术将CR1SPR / Cas9核糖核蛋白(RNP)传递到高通量的马铃薯原生质体中。作为概念验证,我们旨在减少马铃薯中有毒的甾体类生物碱α-茄碱。 GNOME激光转染利用在532 nm下运行的皮秒Nd:YAG激光来激发附着膜的金纳米颗粒的表面等离子体共振。激光的强吸收导致温度升高,导致周围介质汽化并形成空化气泡,从而引起细胞膜的瞬态透化。与哺乳动物细胞相比,修饰原生质体的挑战包括其对重量摩尔渗透压浓度的敏感性,对培养表面的粘附力不足,缺乏用于纳米粒子靶向的商业抗体,以及所应用的纳米粒子对原生质体膜的粘附力低。使用刃天青测定法评估不同条件下的生存力,并通过FITC-右旋糖酐评估分子的递送。为了促进纳米颗粒的结合,研究了细胞膜结合凝集素和接头分子的组合。此外,我们演示了台式激光转染设备的原型,该原型可以在生物实验室环境中进行完整的工作流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号