首页> 外文会议>Conference on nanomechanical testing in materials research and development >IN SITU NANO-INDENTATION OF AU CRYSTALS IMAGED BY BRAGG COHERENT X-RAY DIFFRACTION
【24h】

IN SITU NANO-INDENTATION OF AU CRYSTALS IMAGED BY BRAGG COHERENT X-RAY DIFFRACTION

机译:原位纳米压痕由布拉格相干X射线衍射成像的Au晶体

获取原文

摘要

The mechanical properties of micro- and nanostructures were demonstrated to vary significantly from their bulk counterparts. Despite numerous studies, plasticity at the nanoscale is, however, not fully understood yet. In situ experiments are perfectly suited for the fundamental understanding of the onset of dislocation nucleation. Recently, we developed a scanning force microscope (SFINX) which is compatible with 3rd generation synchrotron beamlines allowing for in situ nano-mechanical tests in combination with nano-focused X-ray diffraction [1] such as coherent X-ray diffraction imaging (CDI). This novel lensless imaging method retrieves the sample scattering function from a coherent X-ray diffraction data set using computational inversion algorithms, thus determining the phase of the scattered amplitude, which is not directly measured by a detector. In Bragg condition, the retrieved phase is directly related to the displacement field and, hence to the strain within a crystal. Our previous BCDI studies on indented Au crystals demonstrated the capability to imaging a single prismatic loop induced by nano-indentation and trapped inside the crystal [2]. Since any movement of diffractometer motors may induce vibrations that eventually lead to damaging the nano-crystal under load, ordinary rocking scans are not suitable for recording 3D reciprocal space maps in situ. Scanning the energy of the incident X-ray beam instead allows for probing the intensity distribution in reciprocal space without any detrimental vibrations [2]. Here, we report about the in situ nano-indentation of Au crystals with and without containing a twin boundary parallel to the crystal-substrate interface where the evolution of both strain and defects was imaged by multi-wavelength (mw) BCDI. Figure 1(a) shows the electron densities for two parts of a twinned Au nanocrystal reconstructed from mw-BCDPs measured at the Au 200 Bragg peaks. The phase, which is directly related to the displacement field inside the structure, is presented in Fig. 1(b) for a gold crystal during nano-indentation allowing for following the evolution of the morphology, the strain field, and dislocations. With increasing applied mechanical load, defects, probably prismatic dislocation loops, appear at about half-height of the indented crystal, which disappear after unloading [4]. To the best of our knowledge, this is the first time that mw-BCDI has been successfully employed during in situ experiments providing direct insight into the plasticity at the nanoscale and, in particular, the onset of defect nucleation.
机译:证明微型和纳米结构的机械性能从其体对应物中显着变化。尽管有许多研究,但是纳米级的可塑性尚未完全理解。原位实验完全适合对脱位成核发作的根本理​​解。最近,我们开发了一种扫描力显微镜(SFINX),其与第三代同步辐射束线兼容,允许与纳米聚焦X射线衍射[1]组合的原位纳米机械测试相结合,例如相干X射线衍射成像(CDI )。这种新颖的无透镜成像方法使用计算反演算法从相干X射线衍射数据集中检索样本散射功能,从而确定散射幅度的相位,该散射幅度不通过检测器直接测量。在布拉格条件下,检索阶段与位移场直接相关,因此在晶体内的应变。我们之前关于缩进AU晶体的BCDI研究证明了通过纳米压痕引起的单个棱柱形环的能力进行了成像并捕获在晶体中[2]。由于衍射仪电动机的任何移动可以诱导最终导致损坏负载下纳米晶体的振动,因此普通的摇摆扫描不适用于以原位记录3D往复空间图。扫描入射X射线束的能量,而是允许探测往复空间中的强度分布而没有任何有害振动[2]。在这里,我们报告与平行于晶体衬底界面的双边界的Au晶体的原位纳米压痕报告,其中菌株和缺陷的演化通过多波长(MW)BCDI成像。图1(a)显示了从在Au200 Bragg峰值测量的MW-BCDPS重建的孪晶Au纳米晶体的两部分的电子密度。与结构内的位移场直接相关的相位如图2所示。如图1(b)所示,用于在纳米凹陷期间的金色晶体,允许跟随形态,应变场和脱位的演变。随着施加的机械负荷增加,缺陷可能是棱柱锁定环,在缩进晶体的大约半高度上出现,在卸载后消失[4]。据我们所知,这是第一次在原位实验期间成功地使用MW-BCDI,提供直接洞察纳米级的可塑性,并且特别是缺陷成核的起始。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号