首页> 外文会议>ASME International Offshore Wind Technical Conference >EXTREME WAVE LOADS ON MONOPILE SUBSTRUCTURES: PRECOMPUTED KINEMATICS COUPLED WITH THE PRESSURE IMPULSE SLAMMING LOAD MODEL
【24h】

EXTREME WAVE LOADS ON MONOPILE SUBSTRUCTURES: PRECOMPUTED KINEMATICS COUPLED WITH THE PRESSURE IMPULSE SLAMMING LOAD MODEL

机译:单子子结构上的极高波载荷:与压力脉冲消减载荷模型耦合的预计算运动学

获取原文

摘要

Monopiles are nowadays the preferred substructure type for bottom-fixed offshore wind turbines at shallow to intermediate water depths. At these locations, the large waves that contribute to extreme loads are strongly nonlinear. Therefore they are not easily reproduced via the simple engineering models who are commonly used in the offshore industry. In the current approach, we develop a design pattern which improves this standard methodology. To retain nonlinearity in the force computations, we have precomputed a number of wave realizations by means of a potential fully-nonlinear code (OceanWave3D), for a wide span of nondimensional water depths and significant wave heights. The designer can then extract a wave kinematics time series from the precomputed set, scale it by the Froude law, and couple it with a suitable force model to compute loads. To complete the picture, slamming loads are calculated by means of the so-called pressure impulse model, recently developed at DTU. Rather than computing the time series of the slamming load, the model uses a few parameters, all except one determinable from the incident wave to calculate the pressure impulse. First comparisons with experimental results, obtained in the framework of the DeRisk project, are promising. The force and the wave elevation statistics from the precomputed simulations are in good agreement with the experiments. Some discrepancies are present, due to an imperfect scaling and to the differences in the physical and numerical domains. The computed loads from the slamming model match the experimental ones quite closely, when the wave celerity is extracted as the ratio between the time gradient and the x-wise space gradient of the surface elevation.
机译:如今,单桩是底部固定的海上风力发电机在浅水到中等水深时的首选子结构类型。在这些位置,导致极端载荷的大波浪是强烈非线性的。因此,通过近海行业中常用的简单工程模型不容易复制它们。在目前的方法中,我们开发了一种改进此标准方法的设计模式。为了在力计算中保持非线性,我们已经使用潜在的完全非线性代码(OceanWave3D)预先计算了许多波实现,适用于大范围的无量纲水深和明显的波高。然后,设计人员可以从预先计算的集合中提取波浪运动学时间序列,根据弗劳德定律对其进行缩放,然后将其与合适的力模型耦合以计算载荷。为了使画面更加完整,通过最近在DTU开发的所谓压力脉冲模型来计算冲击载荷。该模型没有计算冲击载荷的时间序列,而是使用一些参数,除了一个参数可以从入射波确定以外,其他所有参数都可以计算压力脉冲。与DeRisk项目框架中获得的实验结果进行首次比较是很有希望的。预先计算的模拟中的力和波高统计数据与实验非常吻合。由于缩放比例不理想以及物理和数字域的差异,因此存在一些差异。当将波速提取为表面高程的时间梯度与x方向空间梯度之间的比率时,从冲击模型计算得出的载荷与实验载荷非常接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号