首页> 外文会议>ASME international conference on nanochannels, microchannels and minichannels >HEAT TRANSFER ENHANCEMENT IN COMPACT PHASE CHANGE MICROCHANNEL HEAT EXCHANGERS FOR HIGH FLUX LASER DIODES
【24h】

HEAT TRANSFER ENHANCEMENT IN COMPACT PHASE CHANGE MICROCHANNEL HEAT EXCHANGERS FOR HIGH FLUX LASER DIODES

机译:高通量激光二极管紧凑型相变微通道换热器中的传热增强

获取原文

摘要

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm~(-2), and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ~40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm~(-2) using R134a, which compares favorably to a maximum of 0.95 kw cm~(-2) dissipated by the plain walled test section. The 3 μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm~(-2) showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.
机译:微通道中的液体-蒸汽相变传热为高热通量激光二极管的热管理提供了许多显着的优势,包括降低的流速和接近恒温的散热。现代激光二极管棒会产生大于1 kW cm〜(-2)的废热负荷,并且先前的研究表明,在非常紧凑的换热器几何结构中,以这些热通量进行微通道流沸腾传热是可能的。本文介绍了使用金字塔蚀刻方案通过增加微通道的面积来进一步提高性能,该方案比直壁通道的传热面积增加了约40%,当暴露于高热通量时,它可以促进热量扩散并抑制变干现象。该设备由键合到硼硅酸盐上的反应离子蚀刻硅晶圆构成,以实现流量可视化。蚀刻硅层以包含入口和出口歧管以及多个40μm宽,200μm厚,2mm长的通道,这些通道由40μm宽的鳍片隔开。在每个通道的入口处设置15μm宽,150μm长的限制,以促进每个通道中的均匀流速以及每个通道中的流动稳定性。在该区域的增强部分中,将3μm或6μm的锯齿图案垂直蚀刻到壁中,这些壁也沿着流路以3μm的周期性扇形化。实验结果表明,使用R134a,面积为6μm的增强型设备将加热器处的平均最大热通量提高到1.26 kW cm〜(-2),相比之下,通过R134a消散的最大值最大为0.95 kw cm〜(-2)。平壁测试部分。耗散最大为1.02 kW cm〜(-2)的3μm面积增强测试部分显示出的性能仅比平壁测试部分有所提高。两种面积增强方案都将临界热通量的出现推迟到更高的热量输入上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号