首页> 外文会议>International Bhurban Conference on Applied Sciences and Technology >Numerical investigation of unsteady flow interactions in a transonic single stage high pressure turbine
【24h】

Numerical investigation of unsteady flow interactions in a transonic single stage high pressure turbine

机译:跨音速单级高压透平中非定常流动相互作用的数值研究

获取原文

摘要

Understanding of the aerodynamic unsteady flow interactions is essential for improved performance of the modern turbomachines. The performance of a highly loaded transonic turbine is strongly influenced by the unsteady impact of stator trailing edge shock wave on the rotor. In this paper Three-Dimensional unsteady Navier-Stokes calculations of a single high pressure transonic turbine stage are presented. The numerical results predict the flow physics and the unsteady loss generation mechanisms fairly well in the transonic turbine stage. The flow domain is completely described by the velocity flow field and turbulent kinetic energy distribution at various planes behind the stator and rotor. Furthermore, the static pressure distribution at midspan helps to explain the stator-rotor interaction mechanism. The stator trailing edge shock wave impinges on the suction side of the passing rotor blades and reflected back intermittently thus setting up a periodic wake shedding phenomena. The reflected shocks interact with the boundary layer on the suction side of the stator near trailing edge and also on the rotor blade surface while transported through the rotor passage. The stator wakes are chopped by the passing rotor blades and convected through the rotor passage and thus influencing the rotor trailing edge flow. The unsteady pressure fluctuations showed that rotor suction side bears more fluctuations due to the accumulation of stator wakes on it. The understanding of unsteady flow physics and the loss generation mechanisms in turbomachinery will aid to develop methods to design highly efficient machines.
机译:了解空气动力学非恒定流相互作用对于改进现代涡轮机的性能至关重要。定子后缘冲击波对转子的不稳定冲击会严重影响高负载跨音速涡轮的性能。本文提出了单个高压跨音速涡轮级的三维非定常Navier-Stokes计算。数值结果很好地预测了跨音速涡轮机阶段的流动物理特性和非稳态损失的产生机理。流动域完全由定子和转子后面各个平面上的速度流场和湍动能分布来描述。此外,中跨处的静压分布有助于解释定子-转子相互作用的机理。定子后缘冲击波撞击经过的转子叶片的吸力侧,并间歇性地反射回来,从而形成周期性的尾流脱落现象。反射的冲击在通过转子通道传输时,与后缘附近的定子吸力侧上的边界层以及转子叶片表面上的边界层相互作用。定子的尾流被经过的转子叶片切碎,并通过转子通道对流,从而影响了转子的后缘流动。非定常压力波动表明,由于定子尾流的积累,转子吸入侧承受的波动更大。对非稳态流动物理学和涡轮机械损失产生机理的理解将有助于开发设计高效机械的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号