首页> 外文会议>IEEE Nanotechnology Materials and Devices Conference >Response of a Memristive Biomembrane and Demonstration of Potential Use in Online Learning
【24h】

Response of a Memristive Biomembrane and Demonstration of Potential Use in Online Learning

机译:忆阻性生物膜的反应和在线学习中潜在用途的证明

获取原文

摘要

The pervasive von Neumann architecture uses complex processor cores and sequential computation. In contrast, the brain is massively parallel and highly efficient, owing to the ability of the neurons and synapses to store and process information simultaneously and to adapt according to incoming information. These features have motivated researchers to develop a host of brain-inspired computers, devices, and models, collectively referred to as neuromorphic computing systems. The quest for synaptic materials capable of closely mimicking biological synapses has led to an alamethicin-doped, synthetic biomembrane with volatile memristive properties which can emulate key synaptic functions to facilitate learning and computation. In contrast to its solid-state counterparts, this two-terminal, biomolecular memristor features similar structure, switching mechanisms, and ionic transport modality as biological synapses while consuming considerably lower power. To use the device as a circuit element, it is important to understand its response to different kinds of input signals. Here we develop a simplified closed form analytical solution based on the underlying state equations for pulse and sine wave inputs. A Verilog-A model based on Runge-Kutta method was developed to incorporate the device in a circuit simulator. Finally, the paper demonstrates possible applications for short- and long-term learning using its unique volatile memristive properties.
机译:普遍的冯·诺依曼架构使用复杂的处理器内核和顺序计算。相反,由于神经元和突触具有同时存储和处理信息并根据传入信息进行适应的能力,因此大脑在很大程度上是平行且高效的。这些功能促使研究人员开发了许多受大脑启发的计算机,设备和模型,这些计算机,设备和模型统称为神经形态计算系统。对能够紧密模仿生物突触的突触材料的追求已经导致具有挥发性忆阻特性的丙二醛掺杂的合成生物膜,其可以模仿关键的突触功能以促进学习和计算。与它的固态对应物相比,这种两端生物分子忆阻器具有与生物突触相似的结构,转换机制和离子传输方式,同时消耗的功率也低得多。要将设备用作电路元件,重要的是要了解其对各种输入信号的响应。在这里,我们基于脉冲和正弦波输入的基本状态方程,开发了一种简化的封闭形式解析解决方案。开发了一种基于Runge-Kutta方法的Verilog-A模型,以将该器件整合到电路仿真器中。最后,本文演示了利用其独特的易失性忆阻特性在短期和长期学习中的可能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号