首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >VALIDATION OF RESIDUAL CURVATURE INSTALLATION FOR LATERAL BUCKLING MANAGEMENT USING STRUCTURAL RELIABILITY ANALYSIS (SRA)
【24h】

VALIDATION OF RESIDUAL CURVATURE INSTALLATION FOR LATERAL BUCKLING MANAGEMENT USING STRUCTURAL RELIABILITY ANALYSIS (SRA)

机译:使用结构可靠性分析(SRA)对横向屈曲管理中的残余曲率安装进行验证

获取原文

摘要

The method of using residual curvature during pipeline installation, primarily for the purpose of lateral buckling control, has caught an increasing amount of attention over the past few years [1], [9]. The use of residual curvature sparked a particular interest after positive experiences from a 26 km long pipeline on Statoil's Skuld project (2012) in the Norwegian Sea [7]. As such, a range of technical papers elaborating on the topic have recently been published [6], [7], [9]. Some of this work has identified some particularly novel applications for the residual curvature method including freespan mitigation to reduce the requirement for seabed intervention, allowing for direct pipeline tie-ins, use with s-lay installation and even for steel catenary risers [10], [11]. However, these applications are currently only identified and not yet proven successful in any published work. This technical paper focusses on validating the use of residual curvature for the purpose of lateral buckling control in subsea pipelines installed by reel-lay. The residual curvature method demonstrates high buckling reliability without the use of subsea structures or additional installation equipment, with a controlled buckle response and favourable operational bending moments [ 1 ]. The residual curvature method has been shown less sensitive to some design parameters than other lateral buckling control methods [6]. However, published work also show that high strains will develop for short residual curvature lengths, high pipe-seabed frictions and for certain levels of residual strains [6]. Previous research has predicted the behaviour of residual curvature as a means of controlling lateral buckling in a deterministic approach [6], [7], [9]. However, performing a lateral buckling design with a probabilistic approach can offer a more realistic design and demonstrate higher reliability. There is a range of research on probabilistic approaches for lateral buckling design of subsea pipelines, but there is little published work on the same approach for residual curvature in particular. For this reason, this paper suggests a method for determining the likelihood of buckling and the associated bending moments via structural reliability analysis (SRA). A numerical model combining Finite Element (FE) Analysis and a Monte Carlo simulation is applied. A similar approach has already been presented by others for a different lateral buckling control method, and involves forming a database of finite element solutions followed by multivariate interpolation for the stochastic variables [16]. The multivariate interpolation necessitates a permutation of the cases in an FE result database. In order to keep the simulation efficient, only a limited number of variables are treated as stochastic. The variables that are considered as stochastic are those that have been determined that the lateral buckling response due to residual curvature is sensitive to. The variations of the remaining parameters are also accounted for but in a simpler way. The suggested SRA is used to assess the reliability of a pipeline that resembles the Skuld pipeline. The proposed SRA validates that residual curvature is a reliable lateral buckling control method irrespective of great variations in the design parameters that cannot be quantified easily, such as target residual strain. The proposed SRA also serves as a cost attractive solution in the qualification testing, by potentially relieving the installation contractor from the expensive exercise of performing an additional straightening trial.
机译:在过去的几年中,主要用于横向屈曲控制的管道安装过程中使用残余曲率的方法引起了越来越多的关注[1],[9]。挪威国家石油公司挪威国家石油公司(Statoil)的Skuld项目(2012年)中一条长达26公里的管道获得了积极的经验之后,残余曲率的使用引起了人们的特别兴趣[7]。因此,最近发表了一系列有关该主题的技术论文[6],[7],[9]。这项工作中的一些已经发现了残余曲率方法的一些特别新颖的应用,包括减轻自由跨度以减少对海底干预的需求,允许直接管道捆绑,与s-lay安装一起使用,甚至用于钢悬链立管[10], [11]。但是,这些应用程序目前仅被识别,尚未在任何已发表的工作中证明成功。该技术论文着重于验证残余曲率的使用,以用于通过卷轴铺设安装的海底管道中的横向屈曲控制。残余曲率方法显示了高屈曲可靠性,而无需使用海底结构或其他安装设备,具有可控的弯曲响应和良好的工作弯矩[1]。与其他横向​​屈曲控制方法相比,残余曲率方法对某些设计参数的敏感性较低[6]。然而,已发表的工作也表明,对于短的残余曲率长度,高的管海底摩擦以及某些水平的残余应变,将产生高应变[6]。先前的研究已经预测了残余曲率的行为,以此作为确定性方法中控制横向屈曲的一种手段[6],[7],[9]。但是,使用概率方法执行横向屈曲设计可以提供更现实的设计并显示出更高的可靠性。关于海底管道的横向屈曲设计的概率方法,有很多研究,但是,关于残余曲率的相同方法,很少有已发表的工作。因此,本文提出了一种通过结构可靠性分析(SRA)确定屈曲可能性和相关弯矩的方法。应用了结合有限元(FE)分析和蒙特卡洛模拟的数值模型。其他人已经针对不同的横向屈曲控制方法提出了类似的方法,包括形成一个有限元解的数据库,然后对随机变量进行多元插值[16]。多元插值需要在FE结果数据库中对个案进行排列。为了保持模拟的效率,仅将有限数量的变量视为随机变量。被认为是随机的变量是那些由于残余曲率而引起的横向屈曲响应敏感的变量。其余参数的变化也可以解决,但方式更简单。建议的SRA用于评估类似于Skuld管道的管道的可靠性。所提出的SRA验证了残余曲率是一种可靠的横向屈曲控制方法,而与设计参数(例如目标残余应变)中无法轻易量化的巨大变化无关。拟议的SRA还可以通过免除安装承包商进行额外的拉直试验的昂贵工作,从而在资格测试中充当具有成本吸引力的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号