首页> 外文会议>European corrosion congress;International corrosion congress;Pprocess safety congress >Oxidation of AISI 304L austenitic stainless steel at 850°C in O2: Microstructure evolution after breakdown of the Cr-rich oxide scale
【24h】

Oxidation of AISI 304L austenitic stainless steel at 850°C in O2: Microstructure evolution after breakdown of the Cr-rich oxide scale

机译:AISI 304L奥氏体不锈钢在850°C在O2中的氧化:富铬氧化物垢分解后的微观组织演变

获取原文

摘要

Oxidation of austenitic stainless steel such as AISI 304L at high temperature leads to the formation of a protective duplex oxide scale, composed of a Mn-Cr spinel oxide (external layer) and a dense and adherent chromia Cr_2O_3 (internal layer). At high temperature, in high oxygen partial pressure, even if a thin Cr_2O_3 scale forms in the early stage of oxidation, the concentration and diffusion of Cr, particularly for fcc-austenitic stainless steel, cannot feed the further growth of Cr_2O_3.Then, the nodular growth of iron oxides takes place which induces a sudden increase of the oxidation rate. The phenomenon is called "breakaway oxidation". This study investigates the microstructural evolution of the oxidation affected zone of AISI 304L at 850 °C in O_2 flow using a combination of composional/elemental (TEM, Raman spectroscopy) and structural (EBSD) mapping techniques. For the longest oxidation time (312 h), SEM EDS observations on cross sections show the formation of deep oxidation pits underlined by a continuous Cr-rich oxide layer. TEM EDS mapping indicates that the pits are composed of Cr-rich oxides and cavities embedded in a Ni-rich metallic matrix depleted in Fe and Cr. Raman spectral mapping points out that the composition of the underlying Cr-rich oxide layer, Cr_2O_3 or FeCr_2O_4, is linked to the propagation of the oxidation front. EBSD crystallographic orientation map of the underneath substrate evidences a geometrical pattern of this Cr-rich oxide layer in relation with the substrate grain boundaries. A description of microstructure evolution is proposed from these experimental results. In the underneath steel substrate, Cr diffusion is faster in the steel grain boundaries than in the bulk. After about 100 h at 850 °C, Cr supply at the centre of some subsurface grains becomes insufficient to support the continuously growing Cr_2O_3 scale. Chromia is then gradually enriched in Fe and eventually locally converted in less protective FeCr_2O_4 spinel oxide. It results in fast outward cationic diffusion of iron and inward anionic diffusion of oxygen leading to the formation of two-layered oxide nodules. Depending on the composition of the surrounding alloy, an internal oxidation zone, composed of a Ni-Fe metallic phase and Fe-Cr spinel oxide, appears deeper in the alloy. The internal oxidation zone thickens, spreads laterally and eventually meets a grain boundary where Cr is easily supplied. A continuous Cr_2O_3 dense layer is then formed decorating the grain boundaries of the alloys and bordering the oxidation affected zone. The oxidation front is temporarily interrupted until the gradual conversion of Cr_2O_3 in FeCr_2O_4. Then, the inwards oxidation front progresses until a new surface defect is encountered where Cr supply is enhanced. It gives rise to a banded microstructure with alternated Cr-rich oxide layer (FeCr_2O_4 or Cr_2O_3) and two-phase layer (Fe-Cr spinel oxide and Ni-Fe metallic phase).
机译:奥氏体不锈钢(如AISI 304L)在高温下氧化会形成保护性双相氧化皮,该氧化皮由Mn-Cr尖晶石氧化物(外层)和致密且附着的氧化铬Cr_2O_3(内层)组成。在高温下,在较高的氧分压下,即使在氧化的早期形成了薄的Cr_2O_3垢,Cr的浓度和扩散(特别是对于fcc奥氏体不锈钢而言)也无法满足Cr_2O_3的进一步生长。发生氧化铁的球状生长,这引起氧化速率的突然增加。该现象称为“分离氧化”。本研究使用组合/元素(TEM,拉曼光谱)和结构(EBSD)作图技术,研究了在O_2流中850°C下AISI 304L在850°C氧化影响区域的微观结构演变。对于最长的氧化时间(312小时),SEM EDS在横截面上的观察结果表明,形成了深氧化坑,并在其下方形成了连续的富含Cr的氧化物层。 TEM EDS映射表明,凹坑由富铬的氧化物和腔体组成,这些腔体嵌入在贫铁和富铬的富镍金属基体中。拉曼光谱图指出,下面的富Cr氧化物层Cr_2O_3或FeCr_2O_4的组成与氧化前沿的传播有关。基底下方的EBSD晶体取向图证明了这种富Cr氧化物层相对于基底晶界的几何图案。从这些实验结果中提出了微观结构演变的描述。在钢基底下方,Cr在钢晶界中的扩散快于在主体中的扩散。在850°C下经过约100小时后,一些地下晶粒中心的Cr供给不足以支撑连续生长的Cr_2O_3氧化皮。然后,铬逐渐富集到Fe中,并最终在保护性较低的FeCr_2O_4尖晶石氧化物中局部转化。它导致铁的快速向外阳离子扩散和氧的向内阴离子扩散,从而导致两层氧化物结核的形成。根据周围合金的成分,由Ni-Fe金属相和Fe-Cr尖晶石氧化物组成的内部氧化区在合金中更深。内部氧化区变厚,横向扩展并最终遇到易于提供Cr的晶界。然后形成连续的Cr_2O_3致密层,以装饰合金的晶界并与氧化影响区接壤。暂时中断氧化前沿,直到Cr_2O_3在FeCr_2O_4中逐渐转化。然后,向内的氧化前沿继续进行,直到遇到新的表面缺陷,从而增加了铬的供应。它产生了带状的微观结构,具有交替的富铬氧化物层(FeCr_2O_4或Cr_2O_3)和两相层(Fe-Cr尖晶石氧化物和Ni-Fe金属相)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号