首页> 外文会议>International Conference on Nanotechnology >Efficient physics-based modeling of a representative semiconducting quantum dot single electron device
【24h】

Efficient physics-based modeling of a representative semiconducting quantum dot single electron device

机译:代表性的半导体量子点单电子器件的基于物理学的有效建模

获取原文

摘要

In this work we study electron transport modeling of a semiconducting quantum dot interacting with metal electrodes. The modeling utilizes a physics-based kinetic Monte Carlo algorithm to balance accuracy with improved calculation speed, applied to the transport characteristic of a reported experimental Single Electron Transistor (SET) device with semiconducting silicon islands. We introduce an efficient numerical integration method to accurately calculate the electron tunneling rates for all allowable transitions, then apply kinetic Monte Carlo methods to simulate the electronic transport properties of the device. The method accounts for non-constant density of states and transition probabilities, and parasitic field-effect device coupling. A series of test cases have been introduced to demonstrate the relevance of the model. Three test cases explore the physical properties of the SET to confirm the proper modeling of gate, drain, source capacitances, charging energies, and junction widths. A study is designed to explore the temperature sensitivity of a SET with a semiconducting island, where the results show an interesting possibility to control the temperature sensitivity of the system through the applied biases. This behavior is not possible in metallic SET systems. A final study shows that the methodology models a representative experimental three terminal silicon single electron device with a coupled parasitic field effect transistor at low to moderate source-drain biases. The study demonstrates that the complex and aperiodic behavior of the Coulomb oscillations in the experimental device over temperature and bias cannot be fully characterized by the modeled physics of the SET or the nanoscaled MOSFET.
机译:在这项工作中,我们研究与金属电极相互作用的半导体量子点的电子传输模型。该建模利用基于物理学的动力学蒙特卡洛算法来平衡精度与提高的计算速度,该模型应用于已报道的具有半导体硅岛的实验性单电子晶体管(SET)器件的传输特性。我们引入了一种有效的数值积分方法来准确计算所有允许跃迁的电子隧穿速率,然后应用动力学蒙特卡洛方法来模拟器件的电子传输特性。该方法考虑了状态和转移概率的非恒定密度,以及寄生场效应器件的耦合。引入了一系列测试案例以证明该模型的相关性。三个测试案例探讨了SET的物理特性,以确认栅极,漏极,源极电容,充电能量和结宽度的正确建模。设计一项研究来探索具有半导体岛的SET的温度敏感性,结果表明,通过施加的偏压来控制系统的温度敏感性是一种有趣的可能性。在金属SET系统中,这种行为是不可能的。最终研究表明,该方法为具有代表性的实验性三端硅单电子器件建模,该器件具有耦合的低至中等源漏偏置的寄生场效应晶体管。研究表明,SET或纳米级MOSFET的建模物理特性无法完全表征实验器件在温度和偏置下库仑振荡的复杂和非周期性行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号