首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >A characterization study on the electrical and fluid-mechanical efficiency of nanosecond-pulsed dielectric barrier discharge plasma actuators
【24h】

A characterization study on the electrical and fluid-mechanical efficiency of nanosecond-pulsed dielectric barrier discharge plasma actuators

机译:纳秒脉冲介质阻挡放电等离子体致动器的电和流体-机械效率的特性研究

获取原文

摘要

An experimental study is carried out on the efficiency of nanosecond-pulsed dielectric barrier discharge plasma actuators. Investigated parameters are the material and thickness of the barrier as well as the number of nanosecond pulses per burst. The applied experimental technique includes Schlieren, infrared thermography and a back-current shunt for the exact measurement of the voltage signal. The actuator is set upside down in a quiescent environment. Four different dielectric barrier materials are selected and for each material three different thicknesses are tested. The barrier materials chosen are Lexan~©, polytetrafluorethylene (PTFE a.k.a. Teflon~©), Kapton~© and silicone rubber. The experiments are performed in burst discharge mode. Bursts of 30, 40 and 50 pulses at 10kV and 10kHz were investigated. The experimental method used to quantify the efficiency of the actuators makes use of thermography measurements captured right after the discharge of the actuator. Experimental data are used as input to estimate the heat flux during the discharge by means of an Inverse Heat Transfer Problem (IHTP). The same experiments are repeated with a Schlieren technique from which the extend in discharge area can be determined. The back-current shunt technique allows for the determination of the electrical efficiency, thus the energy input by the actuator. Results show for most cases an increasing fluid-mechanical efficiency of the plasma actuator by increasing amount of pulses per burst. Moreover, thinner dielectric barriers also show higher efficiencies compared to the thicker ones.
机译:对纳秒脉冲介质阻挡放电等离子体致动器的效率进行了实验研究。研究的参数是势垒的材料和厚度以及每个突发的纳秒脉冲数。应用的实验技术包括Schlieren,红外热成像技术和用于精确测量电压信号的反向电流分流器。执行器在静态环境中倒置放置。选择四种不同的介质阻挡材料,并针对每种材料测试三种不同的厚度。选择的阻隔材料是Lexan®,聚四氟乙烯(PTFE,也称为Teflon®),Kapton®和硅橡胶。实验在突发放电模式下进行。研究了在10kV和10kHz下的30、40和50个脉冲的突发。用于量化执行器效率的实验方法利用执行器放电后立即捕获的热成像测量数据。实验数据用作输入,通过逆传热问题(IHTP)估算放电过程中的热通量。使用Schlieren技术重复相同的实验,由此可以确定放电面积的扩展。逆流分流技术可确定电效率,从而确定执行器输入的能量。结果表明,在大多数情况下,通过增加每个脉冲的脉冲量,可以提高等离子体执行器的流体机械效率。此外,与较厚的介质阻挡层相比,较薄的介质阻挡层也具有更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号