首页> 外文会议>IEEE Photovoltaic Specialists Conference >Atomic scale understanding of poly-Si/SiO2/c-Si passivated contacts: Passivation degradation due to metallization
【24h】

Atomic scale understanding of poly-Si/SiO2/c-Si passivated contacts: Passivation degradation due to metallization

机译:多晶硅/ SiO2 / c-Si钝化接触的原子尺度理解:金属化导致的钝化降解

获取原文

摘要

We report on the application of analytical microscopy to identify material bottlenecks for silicon solar cell efficiency on an atomic scale, including contacts, interfaces, and passivating layer morphologies. With high lifetime bulk n-Cz wafers available on a mass production scale, the push for higher efficiency (> 20%) is focused on passivation and reduced recombination at the metal contacts. These stringent passivation requirements should be retained during the subsequent device processing. Our device structures involve n-Cz silicon wafers with passivated contacts (poly-Si/SiO2-Cz), and Al2O3/SiNx front surface passivation layers, designed for incorporation into IBC solar cells. Using analytical microscopy, we study failure modes from the macroscopic scale (blisters in the passivation layers, metal adhesion problems) thru the microscopic (micropyramids, microblisters, microcracks) down to the nanoscale (nanopinholes, precipitates, blister edges, grain boundary decoration by dopants, dopant distribution) and atomic scale (dopant aggregation on surfaces and interfaces, atomic bonding valence and character). Metallization degrades our passivated contacts by promoting blistering along the poly-Si/SiO2 interface, which is shown in detail by dissecting blisters and mapping them from a micron-to atomic scale using aberration corrected scanning transmission electron microscopy. A fundamental materials understanding focused on the effects of device processing, especially metallization, on retaining high-efficiency passivated Si devices is therefore gained over these series of presented results, and high resolution analytical microscopy emerges as a powerful tool in guiding high performance Si cell research.
机译:我们报告了分析显微镜在原子尺度上确定硅太阳能电池效率的材料瓶颈的应用,包括接触,界面和钝化层的形态。随着大规模生产的高寿命散装n-Cz晶圆的问世,寻求更高效率(> 20%)的动力集中在钝化和减少金属触点的复合上。这些严格的钝化要求应在后续的器件处理过程中保留。我们的器件结构涉及具有钝化触点(poly-Si / SiO2 / n-Cz)和Al2O3 / SiNx前表面钝化层的n-Cz硅晶片,这些钝化层设计用于结合到IBC太阳能电池中。使用分析显微镜,我们研究了从宏观尺度(钝化层中的气泡,金属粘附问题)到微观尺度(微金字塔,微气泡,微裂纹)直至纳米尺度(纳米锥孔,沉淀,气泡边缘,掺杂剂对晶界装饰)的破坏模式。 ,掺杂物分布)和原子尺度(表面和界面上的掺杂物聚集,原子键合价和性质)。金属化通过促进沿着多晶硅/ SiO 2界面的起泡而使钝化的接触变质,这通过剖析水泡并使用像差校正的扫描透射电子显微镜将其从微米级映射到原子级来详细显示。因此,在上述一系列结果中,获得了对材料加工(尤其是金属化)对保留高效钝化Si器件的影响的基本材料理解,高分辨率分析显微镜成为指导高性能Si电池研究的有力工具。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号