首页> 外文会议>Annual conference on Neural Information Processing Systems >Deep Learning Models of the Retinal Response to Natural Scenes
【24h】

Deep Learning Models of the Retinal Response to Natural Scenes

机译:视网膜对自然场景的反应的深度学习模型

获取原文

摘要

A central challenge in sensory neuroscience is to understand neural computations and circuit mechanisms that underlie the encoding of ethologically relevant, natural stimuli. In multilayered neural circuits, nonlinear processes such as synaptic transmission and spiking dynamics present a significant obstacle to the creation of accurate computational models of responses to natural stimuli. Here we demonstrate that deep convolutional neural networks (CNNs) capture retinal responses to natural scenes nearly to within the variability of a cell's response, and are markedly more accurate than linear-nonlinear (LN) models and Generalized Linear Models (GLMs). Moreover, we find two additional surprising properties of CNNs: they are less susceptible to overfitting than their LN counterparts when trained on small amounts of data, and generalize better when tested on stimuli drawn from a different distribution (e.g. between natural scenes and white noise). An examination of the learned CNNs reveals several properties. First, a richer set of feature maps is necessary for predicting the responses to natural scenes compared to white noise. Second, temporally precise responses to slowly varying inputs originate from feedforward inhibition, similar to known retinal mechanisms. Third, the injection of latent noise sources in intermediate layers enables our model to capture the sub-Poisson spiking variability observed in retinal ganglion cells. Fourth, augmenting our CNNs with recurrent lateral connections enables them to capture contrast adaptation as an emergent property of accurately describing retinal responses to natural scenes. These methods can be readily generalized to other sensory modalities and stimulus ensembles. Overall, this work demonstrates that CNNs not only accurately capture sensory circuit responses to natural scenes, but also can yield information about the circuit's internal structure and function.
机译:感觉神经科学的一个主要挑战是要理解在人类行为学相关的自然刺激编码基础上的神经计算和电路机制。在多层神经回路中,诸如突触传递和尖峰动力学之类的非线性过程对创建对自然刺激的反应的精确计算模型构成了重大障碍。在这里,我们证明了深度卷积神经网络(CNN)几乎在细胞响应的变异范围内捕获了对自然场景的视网膜响应,并且比线性非线性(LN)模型和广义线性模型(GLM)准确得多。此外,我们发现CNN的另外两个令人惊讶的特性:在少量数据上进行训练时,它们比LN同类产品更不容易过拟合;在对来自不同分布(例如自然场景和白噪声之间)的刺激进行测试时,它们的泛化性更好。 。对学到的CNN的检查显示出一些特性。首先,与白噪声相比,需要一组更丰富的特征图来预测对自然场景的响应。第二,对缓慢变化的输入的时间精确响应源自前馈抑制,类似于已知的视网膜机制。第三,在中间层中注入潜在的噪声源使我们的模型能够捕获在视网膜神经节细胞中观察到的亚泊松峰值变化。第四,通过反复的侧向连接增强我们的CNN,使它们能够捕获对比度适应,作为准确描述视网膜对自然场景的响应的新兴属性。这些方法可以很容易地推广到其他的感觉方式和刺激的合奏。总体而言,这项工作表明CNN不仅可以准确地捕获感觉电路对自然场景的响应,而且还可以产生有关电路内部结构和功能的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号