首页> 外文会议>World biomaterials congress >Self-assembled multifunctional nanogel reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells
【24h】

Self-assembled multifunctional nanogel reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells

机译:自组装多功能纳米凝胶可降低促炎细胞因子的表达,从而诱导上皮癌细胞的凋亡

获取原文

摘要

Introduction The link between the inflammatory response and the promotion of cancers is well established; notably in endothelial cancers such as oral, pancreatic and colon. Epidemiological studies have shown that chronic inflammation is a significant causative factor for these cancers. The use of designed, nanostructured materials formed from self assembling peptides as scaffolds is a rapidly growing research area. A particularly promising application involves materials that can mediate the local tumour environment of oral cancers through attenuation of the inflammatory response, whilst simultaneously providing a stable healthy extracellular matrix (ECM) mimic to promote regeneration. Several studies showed promising anti-tumorigenic effects using norvsteroidal anti-inflammatory drugs. Hence, a therapeutic opportunity lies in developing a biocompatible material that can achieve a spatially confined, sustained, non-steroidal and selective suppression of the immune system. Hydrogels formed by bioinspired synthetic organic molecules known as self-assembling peptides (SAP) are highly suitable materials for cancer therapy, they have been shown to form nanofibrillar matrices of similar morphology which are functional both in vitro and in vivo through the inclusion of bioactive and biocompatible peptide sequences in the SAP during synthesis. The formation of SAP hydrogels is a thermodynamically driven process; the noncovalent forces that govern their assembly can be used to physically incorporate larger bioactive molecules. Here, we demonstrate a method to include a powerful non-steroidal anti-inflammatory polysaccharide within the matrix itself. MATERIALS AND METHODS All N-fluorenylmethyloxycarbonyl (Fmoc) self-assembling peptides (SAPs) were synthesised stepwise using solid [phase peptide synthesis. Hydrogels were prepared at 20 mg/mL. 100 μL of deionised water with 50 μl 0.5 M sodium hydroxide (NaOH) was used to dissolve 10 mg of peptide. 0.1 M hydrochloric acid (HCI) was then added dropwise, always while vortexing, until the pH of the solution reached 7.4.. A polyanionic polysacharride, fucoidan (marinova, TAS) was incorporated into the scaffold via coassembly, confirmed by a using a suite of characterisation techniques, including: 1H, 13C Nuclear magnetic resonance spectroscopy; Small angle neutron scattering; Atomic Force Microscopy; Transmission Electron Microscopy; Dynamic Scanning and Isothermal Titration Calorimetry; Fourier Transform-Infra Red, fluorescence and Circular dichroism spectroscopy; and parallel plate rheometry. The anti inflammatory properties of this material were tested for their effectiveness using SCC25 epithelial cancer cells, challenged with Lipopolysaccharide. Cells were cultured in 24 well tissue culture plates, with cell specific culture conditions. RESULTS AND DISCUSSION We use spectroscopic and material analyses to show that coassembly facilitates the binding of fucoidan molecules to the SAP nanofibnls.We demonstrate the scaffold supports the culture of healthy cells whilst concomitanty inducing apoptosis in cancerous cells. We determine this process is underpinned by the significant (orders of magnitude) and sustained downregulation of proinflammatory gene and protein expression related to cell division and cyctokine production, even when challenged with proinflammatory lipopolysaccharide. CONCLUSION This work represents the potential for SAP hydrogels to provide sustained delivery of soluble macromolecules while maintaining their effectiveness as a tissue engineering scaffold material. Our findings highlight an innovative material approach for the distribution and sustained presentation of functional molecules on a nanoscale structure via self-assembly, showing their significant benefit for local cancer immunotherapy and drug delivery vehicles.
机译:简介炎症反应与癌症之间的联系得到了很好的成熟;特别是在口腔,胰腺和结肠等内皮癌中。流行病学研究表明,慢性炎症是这些癌症的显着原因因素。使用设计的纳米结构的材料,由自组装肽形成为支架是一种快速生长的研究区域。特别有前途的应用涉及通过衰减炎症反应的炎症反应来介导口腔癌的局部肿瘤环境的材料,同时提供稳定的健康细胞外基质(ECM)以促进再生。几项研究表明,使用诺韦斯特曲炎抗炎药物的抗致瘤效应显示出来。因此,治疗机会在开发一种生物相容性的材料方面,该材料可以在自然狭窄,持续,非甾体和选择性抑制免疫系统中实现。由已知的自组装合成有机分子(SAP)形成的水凝胶是高度合适的癌症治疗材料,他们已被证明形成相似形态的纳米纤维矩阵,其通过包含生物活性和体内功能在合成期间SAP中的生物相容性肽序列。 SAP水凝胶的形成是一种热力学驱动的方法;控制其组件的非共价力可用于物理掺入较大的生物活性分子。在这里,我们证明了一种在基质本身内包括强大的非甾体抗炎多糖的方法。材料和方法逐步使用固体[相肽合成合成所有N-芴基甲氧基氧基羰基(FMOC)自组装肽(SAP)。水凝胶以20mg / ml制备。用50μl0.5M氢氧化钠(NaOH)100μl去离子水溶解10mg肽。然后滴加0.1M盐酸(HCl),总是在涡旋的同时,直至达到7.4的pH。达到7.4。含有聚阴离子多晶硅藻渣,FUCOINONON(MARINOVA,TA)通过共组织掺入支架中,通过使用套件确认特征技术,包括:1H,13C核磁共振光谱;小角度中子散射;原子力显微镜;透射电子显微镜;动态扫描和等温滴定量热法;傅里叶变换 - 红外线红色,荧光和圆形二色性光谱;和平行板流变仪。使用SCC25上皮癌细胞进行测试的抗炎性能,用脂多糖攻击挑战。细胞在24孔组织培养板中培养,具有细胞特异性培养条件。结果与讨论,我们使用光谱和材料分析来表明合作促进骨饼分子与SAP纳米杆状的结合。我们证明了支架支持健康细胞的培养,同时在癌细胞上诱导凋亡。我们确定该过程是由显着的(数量级)的显着(数量令)和与细胞划分和Cyctokine生产相关的促炎基因和蛋白质表达的持续下调,即使用促炎脂多糖挑战。结论这项工作代表了SAP水凝胶的潜力,以提供可溶于溶性大分子的持续递送,同时保持其作为组织工程支架材料的有效性。我们的研究结果突出了通过自组装在纳米级结构上分配和持续呈现功能分子的创新材料方法,呈现出对局部癌症免疫疗法和药物递送载体的显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号