首页> 外文会议>World biomaterials congress >Mesoporous silica nanoparticle supported lipid bilayers for targeted antibiotic therapeutics
【24h】

Mesoporous silica nanoparticle supported lipid bilayers for targeted antibiotic therapeutics

机译:介孔二氧化硅纳米颗粒支持的脂质双层用于靶向抗生素治疗

获取原文

摘要

Introduction: Drug-resistant bacteria are an emerging clinical heath threat, and currently cause millions of serious infections annually in the US alone. Some resistant microbial pathogens with current or potential clinical relevance include Burkholderia pseudomallei, Francisella tularensis, Bacillus anthracis, Yersinia pestis, and MRSA among many others. With Burkholderia pseudomallei (Bp) infections, pneumonic and septic forms of melioidosis can occur with as few as 10 aerosolized bacteria, and result in highly variable incubation periods (years), which require prolonged antibiotic therapy for effective treatment (months). In this work, targeted nanoparticles were used to kill Burkholderia pseudomallei and Burkholderia thailandensis, in vitro and in vivo respectively, by overcoming a natural resistance mechanism of these microbes. Materials and Methods: The nanoparticle drug carrier we developed for treatment of Burkholderia was comprised of mesoporous silica nanoparticles (MSNPs), which are enveloped by a fused lipid bilayer to form a therapeutic nanoparticle system known as a 'protocell. The MSNP component of the system was synthesized using a well-known aerosol generation technique that yields a polydisperse mesoporous nanoparticle population ranging in size between roughly 10-1000 nanometers. Following synthesis, MSNPs are typically calcined to remove organics and fused with lipids to form protocells. Here, MSNPs were first solute-loaded with antibiotics by equilibrium partitioning, and then fused with targeted liposomes to produce a biocompatible therapeutic nanoconstruct. To fully characterize this nanoparticle system, we employed a host of analysis techniques for both the MSNPs and protocells, including dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning mobility particle sizing (SMPS), optical particle sizing (OPS), nanoparticle tracking analysis (NTA), zeta potential analysis (Zeta), and surface area and porosity characterization (ASAP). Results and Discussion: Protocells modified targeting moieties conjugated to the lipid bilayer showed a high degree of specificity to the corresponding targeted cell lines in vitro. Gentamicin-resistant Bp was efficiently killed in vitro using targeted, gentamicin-loaded protocells by overcoming an efflux pumping resistance mechanism. In vivo, protocells modified with peptide 'zipcodes' showed highly specific uptake in targeted lung tissues following IV administration, as confirmed by ICP-MS. Additionally, in vivo studies with targeted, protocell-administered gentamicin against Burkholderia thailandensis resulted in significantly improved survival of rodents as compared to control groups. Figure 1: Effectiveness in vivo of gentamicin-loaded protocells against B. thailandensis. Conclusions: Mesoporous silica nanoparticle supported lipid bilayers (i.e. 'protocells') can be easily loaded with small molecule therapeutics and efficiently targeted to specific cell types and tissues for various drug delivery applications. Furthermore, this drug carrier system has demonstrated, both in vitro and in vivo, to be a highly effective and safe delivery platform to treat antibiotic-resistant bacterial infections, even after the bacteria have evolved resistance against the antibiotic loaded into the protocell nanoconstruct.
机译:简介:耐药细菌是一种新兴的临床健康威胁,目前仅在美国,每年就造成数百万例严重感染。一些具有当前或潜在临床相关性的抗药性微生物病原体包括伯克霍尔德菌假马勒氏菌,土拉弗朗西斯菌,炭疽芽孢杆菌,鼠疫耶尔森菌和MRSA等。假性伯克霍尔德氏菌(Bp)感染可通过少至10粒气雾化细菌发生肺炎和败血性类疟疾,并导致高度可变的潜伏期(年),这需要长时间的抗生素治疗才能有效治疗(数月)。在这项工作中,通过克服这些微生物的天然抗性机制,使用靶向的纳米颗粒分别在体外和体内杀死假马来伯克氏菌和泰国伯克霍尔德氏菌。材料和方法:我们开发的用于治疗伯克霍尔德氏菌的纳米颗粒药物载体由介孔二氧化硅纳米颗粒(MSNP)组成,该颗粒被融合的脂质双层包裹,形成称为“原细胞”的治疗性纳米颗粒系统。该系统的MSNP组分是使用众所周知的气雾生成技术合成的,该技术可产生大小在大约10-1000纳米之间的多分散中孔纳米粒子群体。合成后,通常将MSNP煅烧以除去有机物,并与脂质融合形成原细胞。在这里,首先通过平衡分配使MSNPs溶质负载抗生素,然后将其与靶向脂质体融合以产生生物相容的治疗性纳米结构。为了全面表征该纳米粒子系统,我们对MSNP和原始细胞采用了许多分析技术,包括动态光散射(DLS),透射电子显微镜(TEM),扫描迁移率粒径(SMPS),光学粒径(OPS) ,纳米粒子跟踪分析(NTA),ζ电位分析(Zeta)以及表面积和孔隙率表征(ASAP)。结果与讨论:与脂质双层结合的经修饰的靶向细胞的原始细胞在体外对相应的靶向细胞系表现出高度的特异性。庆大霉素抗性Bp通过克服外排泵抗性机制,使用靶向的庆大霉素加载的原细胞在体外有效杀死。在体内,经ICP-MS证实,经静脉注射后,用肽“邮政编码”修饰的原始细胞在靶向肺组织中显示出高度特异性的摄取。另外,与针对对照组相比,针对针对性,由原细胞施用的庆大霉素针对泰国伯克霍尔德菌的体内研究导致了啮齿动物的存活率显着提高。图1:载有庆大霉素的原始细胞对泰国芽孢杆菌的体内效力。结论:介孔二氧化硅纳米颗粒支持的脂质双层(即``原始细胞'')可以轻松装载小分子治疗剂,并有效靶向特定的细胞类型和组织,以用于各种药物递送应用。此外,该药物载体系统已在体外和体内证明是治疗抗生素抗性细菌感染的高效和安全的递送平台,即使在细菌已经进化出对加载到原生细胞纳米结构中的抗生素的抗性之后。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号