首页> 外文会议>World biomaterials congress >Direct measurement of single molecular interaction free energies at solid/liquid interfaces based on non-equilibrium force spectroscopy
【24h】

Direct measurement of single molecular interaction free energies at solid/liquid interfaces based on non-equilibrium force spectroscopy

机译:基于非平衡力谱直接测量固/液界面上单分子相互作用的自由能

获取原文

摘要

Unraveling the complexity of biological and biomaterials based on molecular level details relies on understanding single molecule interactions and their scaling towards integral interactions at the meso- and macroscopic scale. Here, I will discuss how one can measure the interaction free energy of single interacting functional groups with surfaces at a variety of solid/liquid interfaces. Also, I will show how these interactions scale with the number density towards the macroscopic level', where a large number of these bonds interact simultaneously. In particular, we developed a synergistic experimental approach combining Surface Forces Apparatus (SFA) experiments and single molecule force spectroscopy (SMFS). Equilibrium SFA measurements scale linearly with the number density of a model acid-base bond at an interface, providing acid-amine interaction energies of 10.9 ± 0.2 kT. Using Bell-Evans theory together with Jarzynski's equality, we can demonstrate how a set of single molecule interaction forces measured by SMFS similarly converges to an interaction energy of 11 ± 1 kT, with unbinding energy barriers of 25 kT ± 5 kT. This demonstrates excellent predictive power of our newly developed scaling approach. In addition to acid/base interactions, we tested a number of other bonds including hydrophobic, ligand-receptor and metal-polymer bonds with our model and find that our model is widely applicable. Hence, we will discuss in detail how single molecule unbinding energy landscapes can be utilized to predict scenarios where a large number of molecules simultaneously interact, giving rise to both macroscopic equilibrated and non-equilibrated interaction energies. As such, our experimental strategy provides a unique framework for the molecular design of novel functional materials through predicting of large-scale properties such as adhesion, self-assembly or cell-substrate interactions based on experimentally determined single molecule energy landscapes.
机译:根据分子水平的细节来揭示生物和生物材料的复杂性取决于对单分子相互作用及其在介观和宏观尺度上向整体相互作用的扩展的理解。在这里,我将讨论如何在各种固/液界面上测量单个相互作用的官能团与表面的相互作用自由能。另外,我将展示这些相互作用如何随着数量密度朝着宏观水平扩展,其中大量的这些键同时相互作用。特别是,我们开发了一种结合了表面力仪器(SFA)实验和单分子力谱(SMFS)的协同实验方法。平衡SFA测量与界面上模型酸碱键的数量密度成线性比例,可提供10.9±0.2 kT的酸-胺相互作用能。使用Bell-Evans理论和Jarzynski的等式,我们可以证明通过SMFS测量的一组单分子相互作用力如何类似地收敛到11±1 kT的相互作用能,并具有25 kT±5 kT的解键能垒。这证明了我们新开发的缩放方法的出色预测能力。除了酸/碱相互作用外,我们还在模型中测试了许多其他键,包括疏水键,配体-受体键和金属-聚合物键,并发现我们的模型具有广泛的适用性。因此,我们将详细讨论如何利用单分子的非结合能态来预测大量分子同时相互作用的情况,从而产生宏观平衡和非平衡相互作用能。因此,我们的实验策略通过基于实验确定的单分子能量态势预测诸如粘附,自组装或细胞-基质相互作用等大规模特性,为新型功能材料的分子设计提供了独特的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号