首页> 外文会议>World biomaterials congress >Designing dense connective tissues: identifying micro-environmental factors that direct human MSC differentiation in 3D
【24h】

Designing dense connective tissues: identifying micro-environmental factors that direct human MSC differentiation in 3D

机译:设计致密的结缔组织:确定在3D模式下指导人类MSC分化的微环境因素

获取原文

摘要

Introduction: Microenvironmental factors such as biomaterial physical and biochemical properties, external mechanical stimuli, and soluble chemical cues integrate in vivo to direct the differentiation of mesenchymal stromal cells (MSCs). Identifying what factor combinations promote the differentiation of MSCs into myofibroblasts (the tissue producing cells of developing valves, ligaments, skin, tendons and periodontal ligaments) is a significant challenge when designing for dense, type Ⅰcollagen-rich connective tissues. To date, select combinations of microenvironmental factors have been studied in 2D, but systematic consideration of the integration of factors in 3D culture has not been explored fully. Materials and Methods: We developed a 3D screening platform to systematically study MSC responses to microenvironmental stimuli. Permutations of the cell adhesion sequences RGD, DGEAand YIGSR at different concentrations (0-2 mM) were incorporated Into 5-11 wt% (5-22 kPa compressive moduli) polyethylene glycol norbornene (PEG-NB) hydrogel arrays. Since PEG-NB is inert and easily crosslinked with UV light, adhesion ligands can be tuned independently from biomaterial properties, enabling us to identify the contribution of individual factors in a combinatorial fashion. Human bone marrow-derived MSCs were encapsulated and cultured in the 3D arrays for 7 days with 0 or 5 ng/mL TGF-β1. The extent of α-smooth muscle actin (αSMA) expression and collagen type Ⅰdeposition were modeled using least squares estimation and regression on 3D confocal data (Figure 1A) that was analysed using Imaris (Figure 1B). Each experiment was replicated four times and statistical analyses were performed in JMP on the pooled data. Results and Discussion: Regression analyses of the screening data revealed that in the presence of TGF-β1, PEG-NB hydrogel wt% was the most significant factor influencing myofibrablast differentiation (p < 0.0001), with greater aSMA staining intensity manifesting at lower gel wt%. These data are in contrast to MSC myofibroblastic differentiation in 2D, which is promoted by stiffer substrates. With TGF-β1, RGD concentration was correlated with aSMA staining intensity in a positive, biphasic manner and demonstrated a significant, non-linear dependence with PEG-NB wt% (p = 0.02) (Figure 2A). Interestingly, aSMA staining intensity could only be predictably modeled by regression in cultures that were supplemented with TGF-β1. These observations suggest that while MSCs can express aSMA in the absence of exogenous TGF-β1, aSMA expression is only sensitive to material properties in the presence of TGF-(51. Collagen deposition was predominantly negatively correlated with PEG-NB hydrogel wt% (p<0.0001) with or without TGF-β1, with slight non-linear dependence between RGD and DGEA (p = 0.01) (Figure 2B) or linear dependence with RGD (p = 0.04) in the absence or presence of TGF-β1, respectively. Conclusion: The newly developed 3D screening platform enables the systematic identification of optimal conditions for connective tissue engineering when considering multiple interacting microenvironmental factors. The data presented here demonstrate that conditions which promote a myofibroblast phenotype in 2D do not translate completely to the more complex and integrative 3D environment.
机译:简介:微环境因素(例如生物材料的物理和生化特性,外部机械刺激和可溶性化学信号)在体内整合在一起,以指导间充质基质细胞(MSC)的分化。在设计致密的,富含Ⅰ型胶原的结缔组织时,确定哪些因子组合可促进MSC分化为成肌纤维细胞(发育中的瓣膜,韧带,皮肤,肌腱和牙周膜的组织产生细胞)。迄今为止,已经在2D中研究了微环境因素的选择组合,但是尚未充分探索在3D文化中综合考虑因素的系统性考虑。材料和方法:我们开发了3D筛选平台,以系统研究MSC对微环境刺激的反应。将细胞粘附序列RGD,DGEA和YIGSR在不同浓度(0-2 mM)的排列合并到5-11 wt%(5-22 kPa压缩模量)聚乙二醇降冰片烯(PEG-NB)水凝胶阵列中。由于PEG-NB是惰性的,并且很容易与紫外线交联,因此可以独立于生物材料特性来调整粘附配体,从而使我们能够以组合方式识别各个因素的作用。封装人骨髓来源的MSC,并在3D阵列中用0或5 ng / mLTGF-β1培养7天。使用最小二乘估计和回归对3D共聚焦数据(图1A)进行建模,对α-平滑肌肌动蛋白(αSMA)的表达和Ⅰ型胶原沉积程度进行建模(图1B)。每个实验重复四次,并在JMP中对汇总数据进行统计分析。结果与讨论:筛选数据的回归分析表明,在存在TGF-β1的情况下,PEG-NB水凝胶wt%是影响成肌纤维母细胞分化的最重要因素(p <0.0001),而在较低的wt处表现出更高的aSMA染色强度。 %。这些数据与2D的MSC肌纤维母细胞分化相反,后者由更坚硬的底物促进。使用TGF-β1,RGD浓度与aSMA染色强度呈正相关,双相相关,并表现出与PEG-NB wt%的显着非线性依赖性(p = 0.02)(图2A)。有趣的是,只有在补充了TGF-β1的培养物中,回归分析才能预测aSMA的染色强度。这些观察结果表明,尽管在不存在外源性TGF-β1的情况下MSC可以表达aSMA,但在存在TGF-β的情况下aSMA的表达仅对材料特性敏感。(51。胶原蛋白沉积与PEG-NB水凝胶wt%负相关(p <0.0001)有或没有TGF-β1,分别在不存在或存在TGF-β1的情况下,RGD和DGEA之间存在轻微的非线性相关性(p = 0.01)(图2B)或在RGD和DGEA之间存在线性相关性(p = 0.04)结论:新开发的3D筛选平台可以在考虑多种相互作用的微环境因素时系统地确定结缔组织工程的最佳条件,此处显示的数据表明,促进2D的成肌纤维细胞表型的条件不能完全转化为更复杂和更复杂的条件。集成3D环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号