首页> 外文会议>World biomaterials congress >Robust, nanofiber-enabled hydrogel devices for islet encapsulation and delivery
【24h】

Robust, nanofiber-enabled hydrogel devices for islet encapsulation and delivery

机译:健壮的纳米纤维水凝胶装置,用于胰岛的包封和递送

获取原文

摘要

Islet encapsulation holds enormous clinical potential for the treatment of type 1 diabetes. In islet encapsulation, a biomaterial or device with semipermeable membranes protects the islet cells from Immune rejection, without the use of immunosuppression, while simultaneously allowing facile mass transfer toRobust, nanofiber-enabled hydrogel devices for islet encapsulation and delivery maintain the cell survival and function. Polymer based islet encapsulation devices have been developed for decades with some of them already commercialized, such as TheraCyte™. Although mechanically durable and easy to use, these current encapsulation devices, mostly made from phase inverted membranes or expanded Teflon, often suffer from insufficient biocompatibility and fibrosis. As an alternative, biocompatible hydrogels have been widely employed for islet encapsulation and delivery. However, the mechanical robustness of commonly used hydrogels such as alginate is inadequate, which causes concerns about the long-term stability and safety especially when stem cell-derived beta-like cells are used. Here, we report our first attempt to address these challenges by designing robust, hydrogel-based, nanofiber-enabled, encapsulation devices (NEEDs) for islet encapsulation and delivery. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). We fabricated the NEEDs from a range of hydrogels including PEG and alginate, and with different compartmentalizations (Figure 1a,b). Mechanical testing confirmed their superior robustness (Figure 1c). Using both model cells and rat islets, we demonstrated the facile mass transfer and flexible cell loading in single or multiple compartments with a control over the cell-dispersing matrix (Figure 1 d). Lastly, we evaluated the biocompatibility, functionality and retrievability of the NEEDs by encapsulating and delivering rat islets into a chemically-induced diabetic mouse model. The diabetes was corrected for the duration of the experiment (8 weeks) right before the implants were retrieved (Figure 1 e). The retrieved devices showed minimal fibrosis according to histological studies and as expected, live and functional islets were observed within the devices (Figure 1f). Taken together, these data suggest that the NEED design can potentially overcome some of the challenges in the islet encapsulation field and may therefore contribute to the development of beta cell replacement therapies for insulin-dependent diabetes.
机译:胰岛封装在治疗1型糖尿病方面具有巨大的临床潜力。在胰岛包封中,具有半透膜的生物材料或装置可保护胰岛细胞免受免疫排斥,而无需使用免疫抑制功能,同时可轻松地将质量转移到用于胰岛包封和递送的坚固纳米纤维水凝胶装置中,从而维持细胞存活和功能。基于聚合物的胰岛包封设备已经开发了数十年,其中一些已经商业化,例如TheraCyte™。尽管这些机械封装持久耐用且易于使用,但这些封装设备大多由倒相膜或膨胀的聚四氟乙烯制成,经常会遭受生物相容性不足和纤维化的困扰。作为替代,生物相容性水凝胶已被广泛用于胰岛的包封和递送。然而,常用的水凝胶例如藻酸盐的机械强度不足,这引起对长期稳定性和安全性的担忧,尤其是当使用源自干细胞的β样细胞时。在这里,我们报告了我们通过设计健壮的,基于水凝胶的,具有纳米纤维功能的,用于胰岛包封和递送的包封设备(NEED)来应对这些挑战的首次尝试。在这种设计中,我们利用了众所周知的毛细管作用,该作用将润湿液保持在多孔介质中。通过用水凝胶前体溶液浸渍预制管状或平面装置的高度多孔的电纺纳米纤维膜,然后进行交联,我们获得了各种具有纳米纤维功能的水凝胶装置。这种方法广泛适用,不会改变水凝胶的水含量或内在化学性质。该装置保留了水凝胶(例如,生物相容性)和纳米纤维的性质(例如,机械强度)。我们从包括PEG和藻酸盐在内的多种水凝胶中制造出了NEED,并且具有不同的分隔(图1a,b)。机械测试证实了其出色的耐用性(图1c)。使用模型细胞和大鼠胰岛,我们展示了在单个或多个隔室中的轻松传质和灵活的细胞负载,并控制了细胞分散基质(图1 d)。最后,我们通过将大鼠胰岛封装并递送到化学诱导的糖尿病小鼠模型中来评估NEED的生物相容性,功能性和可回收性。在植入物取回之前(图1e),在实验期间(8周)纠正了糖尿病。根据组织学研究,取回的装置显示出最小的纤维化,并且如所预期的,在装置内观察到了活的和功能性的胰岛(图1f)。综上所述,这些数据表明NEED设计可以潜在地克服胰岛封装领域中的一些挑战,因此可能有助于开发胰岛素依赖型糖尿病的β细胞替代疗法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号