首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF BUBBLE DYNAMICS IN POROUS AND NON-POROUS MEDIA
【24h】

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF BUBBLE DYNAMICS IN POROUS AND NON-POROUS MEDIA

机译:多孔和非多孔介质中气泡动力学的实验和数值研究

获取原文

摘要

In this study an experimental work is conducted to investigate the shape and speed of an air bubble in a pipe filled with different viscous fluids and porous media. The experimental results are also compared with the Computational Fluid Dynamics (CFD) simulation. Multiphase flows are complex due to the infinitely deformable nature of interface in gas/liquid flows. If one of the phases is gas acts as dispersed phase in the form of bubble, then the complexity will arise from the non-uniform distribution of bubbles in the pipe cross-section and axial distance. Inclusion of different viscous fluids simulating the industrial scale hydrocarbon properties brings added challenge in understating the bubble rise, coalescence and breakup dynamics. Moreover, bubble rise and change of shape of bubble in porous media will bring additional complexity in the flow dynamics. The pipe used in the experiment and CFD was 11.6 cm ID and a length of 100 cm. Three situations were tested: ⅰ) an air bubble rising in stagnant water, ⅱ) an air bubble rising in moving water, and ⅲ) an air bubble rising in a stagnant water but filled with porous media with porosity of 27%. Preliminary CFD results indicate that an air bubble has an average velocity of 0.2468 m/s and 0.2524 m/s in stagnant water and moving water, respectively, which is very close to experimental results.
机译:在这项研究中,进行了一项实验工作,以研究充满不同粘性流体和多孔介质的管道中气泡的形状和速度。实验结果也与计算流体动力学(CFD)模拟进行了比较。由于界面在气体/液体流中的无限可变形性,因此多相流非常复杂。如果这些相之一是气体以气泡形式作为分散相,则复杂性将由气泡在管道横截面和轴向距离中的不均匀分布而引起。包含各种模拟工业规模碳氢化合物性质的粘性流体,在低估气泡上升,聚结和破裂动力学方面带来了更大的挑战。此外,多孔介质中的气泡上升和气泡形状的变化将给流动动力学带来额外的复杂性。实验中使用的管道和CFD为11.6厘米ID,长度为100厘米。测试了三种情况:ⅰ)死水中气泡上升,ⅱ)死水中气泡上升,and)死水中气泡上升,但填充了孔隙率为27%的多孔介质。初步的CFD结果表明,气泡在死水和运动水中的平均速度分别为0.2468 m / s和0.2524 m / s,与实验结果非常接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号