首页> 外文会议>Conference on infrared sensors, devices, and applications >Compositional control of the mixed anion alloys in gallium-free InAs/InAsSb superlattice materials for infrared sensing
【24h】

Compositional control of the mixed anion alloys in gallium-free InAs/InAsSb superlattice materials for infrared sensing

机译:无镓InAs / InAsSb超晶格材料中用于红外传感的混合阴离子合金的成分控制

获取原文

摘要

Gallium (Ga)-free InAs/InAsSb superlattices (SLs) are being actively explored for infrared detector applications due to the long minority carrier lifetimes observed in this material system. However, compositional and dimensional changes through antimony (Sb) segregation during InAsSb growth can significantly alter the detector properties from the original design. At the same time, precise compositional control of this mixed-anion alloy system is the most challenging aspect of Ga-free SL growth. In this study, the authors establish epitaxial conditions that can minimize Sb surface segregation during growth in order to achieve high-quality InAs/InAsSb SL materials. A nominal SL structure of 77 A InAs/35 A InAs_(0.7)Sb_(0.3) that is tailored for an approximately six-micron response at 150 K was used to optimize the epitaxial parameters. Since the growth of mixed-anion alloys is complicated by the potential reaction of As_2 with Sb surfaces, the authors varied the deposition temperature (T_g) under a variety of As_x flux conditions in order to control the As_2 surface reaction on a Sb surface. Experimental results reveal that, with the increase of T_g from 395 to 440 °C, Sb-mole fraction x in InAs_(1-x)Sb_x layers is reduced by 21 %, under high As flux condition and only by 14 %, under low As flux condition. Hence, the Sb incorporation efficiency is extremely sensitive to minor variations in epitaxial conditions. Since a change in the designed compositions and effective layer widths related to Sb segregation disrupts the strain balance and can significantly impact the long-wavelength threshold and carrier lifetime, further epitaxial studies are needed in order to advance the state-of-the-art of this material system.
机译:由于在该材料系统中观察到的少数载流子寿命较长,因此正在积极探索将无镓InAs / InAsSb超晶格(SLs)用于红外探测器。但是,InAsSb生长过程中由于锑(Sb)偏析而引起的成分和尺寸变化会大大改变原始设计的检测器性能。同时,对这种混合阴离子合金系统的精确成分控制是无镓SL增长过程中最具挑战性的方面。在这项研究中,作者建立了外延条件,可以使生长过程中Sb的表面偏析最小化,从而获得高质量的InAs / InAsSb SL材料。针对150 K下约六微米的响应量身定制的77 A InAs / 35 A InAs_(0.7)Sb_(0.3)的标称SL结构用于优化外延参数。由于混合阴离子合金的生长由于As_2与Sb表面的潜在反应而变得复杂,因此作者在各种As_x助熔剂条件下改变沉积温度(T_g),以控制Sb表面上的As_2表面反应。实验结果表明,随着T_g从395°C升高到440°C,InAs_(1-x)Sb_x层中的Sb摩尔分数x在高As通量条件下降低21%,而在As低通量条件下仅降低14%。作为助焊剂的条件。因此,Sb的掺入效率对外延条件的微小变化极为敏感。由于与Sb偏析有关的设计成分和有效层宽度的变化会破坏应变平衡并可能显着影响长波长阈值和载流子寿命,因此需要进行进一步的外延研究,以提高Sb的最新技术水平。这个物质系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号