首页> 外文会议>International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing >Structure and rank awareness for error and data flow reduction in phase-shift-based ToF imaging systems using compressive sensing
【24h】

Structure and rank awareness for error and data flow reduction in phase-shift-based ToF imaging systems using compressive sensing

机译:使用压缩感测的基于相移的ToF成像系统中的错误和数据流减少的结构和等级感知

获取原文

摘要

Phase-shift-based Time-of-Flight (ToF) imaging systems estimate the distances from the camera to the scene points from the phase shift undergone by a modulated light signal, projected onto the scene, instead of actually performing time measurements. The phase shift is typically computed from several values of the cross-correlation between the light signal received by each pixel and a reference signal at the pixel level. This means that several acquisitions per depth image are needed, producing a series of raw images, which have to be transmitted to a processing unit to generate the depth image. It is well known that these raw images admit a sparse representation in an appropriate domain and that such representation is often not completely free, but follows a certain structure, e.g., tree structure of natural images in wavelet domain. Furthermore, we show that raw images share the same support in its sparse representation. The structured sparsity allows raw images to be efficiently recovered from few measurements using Compressed Sensing (CS), while the common support makes feasible simultaneous recovery of all raw images in a Multiple Measurement Vector (MMV) framework. Conventional depth estimation methods might require gathering measurements that are redundant, i.e., some of them could be represented as linear combinations of the others. This means that the matrix of measurements in a MMV recovery framework is rank-deficient, making rank awareness an important point of the approach. In this paper we present a modification of the Rank Aware Order Recursive Matching Pursuit (RA-ORMP) algorithm that accounts for structured sparsity and apply it to recover raw data from a Photonic Mixer Device (PMD) depth sensor. Our results show a clear noise reduction, both in the recovered images and the final depth estimation, achieved by means of a robust joint support estimation, while enabling considerable data flow reduction.
机译:基于相移的飞行时间(ToF)成像系统根据投射到场景上的调制光信号所经历的相移来估计从相机到场景点的距离,而不是实际执行时间测量。通常根据每个像素接收的光信号与像素级别的参考信号之间互相关的几个值来计算相移。这意味着每个深度图像需要进行几次采集,从而生成一系列原始图像,这些原始图像必须传输到处理单元以生成深度图像。众所周知,这些原始图像在适当的域中接受稀疏表示,并且这种表示通常不是完全自由的,而是遵循一定的结构,例如小波域中的自然图像的树结构。此外,我们显示原始图像在其稀疏表示中共享相同的支持。结构化的稀疏性允许使用压缩传感(CS)通过少量测量有效地恢复原始图像,而通用支持则使在多测量向量(MMV)框架中同时恢复所有原始图像成为可能。传统的深度估计方法可能需要收集多余的测量值,即其中一些可以表示为其他的线性组合。这意味着,MMV恢复框架中的度量矩阵缺乏等级,这使等级意识成为该方法的重点。在本文中,我们提出了一种对等级感知订单递归匹配追踪(RA-ORMP)算法的修改,该算法考虑了结构化稀疏性,并将其应用于从光子混合器设备(PMD)深度传感器中恢复原始数据。我们的结果表明,通过强大的联合支持估计,可以在恢复的图像和最终深度估计中均实现明显的降噪,同时可以显着减少数据流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号