首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Flow field and Liner Heat Transfer for a Model Annular Combustor Equipped with Radial Swirlers
【24h】

Flow field and Liner Heat Transfer for a Model Annular Combustor Equipped with Radial Swirlers

机译:装有径向旋流器的环形环形燃烧室的流场和缸套传热

获取原文

摘要

Swirling flows for combustion stabilization, flame confinement, and proper fuel mixing and recirculation are prevalent in gas turbine combustor applications. Modern gas turbines use swirlers to induce strong rotating vortices and recirculation of the combustion gases to enhance combustion efficiency and stability. This study presents an experimental investigation of the flow field and wall heat transfer characteristics inside a model annular combustor equipped with radial swirlers. 2D Pwarticle Image Velocimetry (2D-PIV) was used to characterize the flow field inside the combustor model. PIV measurements were taken for a single Reynolds number of 70000. To study the recirculation zone, data along the axial direction of the combustor were captured. The data show a slightly asymmetric flow, with the recirculation zone extending up to 0.45D - 0.7D, where D is the hydraulic diameter of the entire annulus (D = 0.7m). To study the evolution of the rotating vortex and the flow velocity close to the liner walls, PIV data was also captured at six cross-sections of the annular combustor. The vortex center was observed to be ~0.02D below the center of the swirler, consistent with the asymmetry observed in the axial measurements. Infrared (IR) thermography was used to measure the steady state heat transfer coefficients along the outer and inner liner walls for Reynolds numbers of 70000, 130000, and 170000. The comparison between the heat transfer results for the different Reynolds numbers reveals a relatively constant position for the peak heat transfer at 0.15 - 0.180 from the swirler exit for both walls. Computational Fluid Dynamics (CFD) calculations were also performed to better understand the characteristics of the flow inside the model combustor. The CFD model reproduces the experimental setup with a mesh of 25 million cells. A Reynolds-Averaged Navier-Stokes (RANS) model was used in the simulation, qualitatively reproducing the overall characteristics observed in the experiment.
机译:在燃气轮机燃烧器应用中普遍存在用于稳定燃烧,限制火焰,以及适当的燃料混合和再循环的旋流。现代燃气轮机使用旋流器引起强烈的旋转涡旋,并使燃烧气体再循环,以提高燃烧效率和稳定性。这项研究提出了对装有径向旋流器的环形燃烧器内部流场和壁传热特性的实验研究。 2D Pwarticle图像测速仪(2D-PIV)用于表征燃烧室模型内部的流场。对单个雷诺数70000进行PIV测量。为研究再循环区,沿燃烧器轴向收集数据。数据显示出略微不对称的流动,再循环区域扩展至0.45D-0.7D,其中D是整个环空的水力直径(D = 0.7m)。为了研究旋转涡流的演变以及靠近衬管壁的流速,还在环形燃烧器的六个横截面处捕获了PIV数据。涡旋中心比旋流器中心低约0.02D,这与轴向测量中的不对称性一致。雷诺数为70000、130000和170000的红外(IR)热像仪用于测量沿内外壁的稳态传热系数。不同雷诺数的传热结果之间的比较表明,位置相对恒定从两个壁的旋流器出口传热的峰值在0.15-0.180之间。还执行了计算流体动力学(CFD)计算,以更好地了解模型燃烧器内部的流动特性。 CFD模型重现了具有2500万个单元的网格的实验设置。在仿真中使用了雷诺平均Navier-Stokes(RANS)模型,定性地再现了实验中观察到的总体特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号